(本小題滿分12分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍且經(jīng)過點(diǎn)M(2,1),平行于OM的直線軸上的截距為,交橢圓于A、B兩個(gè)不同點(diǎn).
(1)求橢圓的方程;
(2)求m的取值范圍;
(3)求證直線MA、MB與軸始終圍成一個(gè)等腰三角形.

(1)(2)(3)設(shè)直線MA、MB的斜率分別為k1,k2,證明k1+k2=0即可.

解析試題分析:(1)設(shè)橢圓方程為,
,則,∴橢圓方程.
(2)∵直線l平行于OM,且在軸上的截距為m,又 ,
∴l(xiāng)的方程為:,
,
∵直線l與橢圓交于A、B兩個(gè)不同點(diǎn),
     
∴m的取值范圍是
(3)設(shè)直線MA、MB的斜率分別為k1,k2,只需證明k1+k2=0即可
設(shè)
 可得


,
∴k1+k2=0,故直線MA、MB與x軸始終圍成一個(gè)等腰三角形.
考點(diǎn):本小題主要考查橢圓方程,直線與橢圓的位置關(guān)系,橢圓的性質(zhì).
點(diǎn)評:本題主要考查了直線與圓錐曲線的關(guān)系的綜合問題.考查了學(xué)生轉(zhuǎn)化和化歸思想的運(yùn)用,統(tǒng)籌運(yùn)算的能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn)軸上的動(dòng)點(diǎn),點(diǎn)軸上的動(dòng)點(diǎn),點(diǎn)為定點(diǎn),且滿足.
(Ⅰ)求動(dòng)點(diǎn)的軌跡的方程;
(Ⅱ)過點(diǎn)且斜率為的直線與曲線交于兩點(diǎn),試判斷在軸上是否存在點(diǎn),使得成立,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓的中心在坐標(biāo)原點(diǎn)O,長軸長為2,離心率e=,過右焦點(diǎn)F的直線l交橢圓于P、Q兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿足該條件的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C1:,拋物線C2:,且C1、C2的公共弦AB過橢圓C1的右焦點(diǎn).
(Ⅰ)當(dāng)AB⊥軸時(shí),求、的值,并判斷拋物線C2的焦點(diǎn)是否在直線AB上;
(Ⅱ)是否存在、的值,使拋物線C2的焦點(diǎn)恰在直線AB上?若存在,求出符合條件的的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分10分)已知直線與圓的交點(diǎn)為A、B,
(1)求弦長AB;
(2)求過A、B兩點(diǎn)且面積最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)
已知橢圓的中點(diǎn)在原點(diǎn)O,焦點(diǎn)在x軸上,點(diǎn)是其左頂點(diǎn),點(diǎn)C在橢圓上且·="0," ||=||.(點(diǎn)C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線和橢圓交于M,N兩個(gè)不同點(diǎn),求面積的最大值,并求此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本大題滿分14分)
已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,且所在直線的斜率之積等于
(Ⅰ)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(Ⅱ)當(dāng)時(shí),過點(diǎn)的直線交曲線兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對稱點(diǎn)為(不重合).求證直線軸的交點(diǎn)為定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
設(shè)雙曲線的方程為,、為其左、右兩個(gè)頂點(diǎn),是雙曲線 上的任意一點(diǎn),作,,垂足分別為、交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)的離心率分別為、,當(dāng)時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點(diǎn)M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個(gè)不同點(diǎn).
(ⅰ)若為鈍角,求直線軸上的截距m的取值范圍;
(ⅱ)求證直線MAMBx軸圍成的三角形總是等腰三角形.

查看答案和解析>>

同步練習(xí)冊答案