1.網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為(  )
A.2B.4C.$\frac{2\sqrt{2}}{3}$D.1+$\frac{2\sqrt{2}}{3}$

分析 幾何體為兩個(gè)三棱柱的組合體,作出直觀圖,代入體積公式計(jì)算即可.

解答 解:幾何體為兩個(gè)大小相同的三棱柱的組合體,直觀圖如圖所示:
三棱柱的底面為直角邊為1的直角三角形,高為2,
∴幾何體的體積V=2×$\frac{1}{2}×{1}^{2}×2$=2.
故選:A.

點(diǎn)評(píng) 本題考查了三棱錐與正方體的三視圖、體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在同一坐標(biāo)系中,將曲線y=$\frac{1}{2}$sin3x變?yōu)榍y'=sinx′的伸縮變換是(  )
A.$\left\{{\begin{array}{l}{x=3x'}\\{y=\frac{1}{2}y'}\end{array}}\right.$B.$\left\{{\begin{array}{l}{x'=3x}\\{y'=\frac{1}{2}y}\end{array}}\right.$C.$\left\{{\begin{array}{l}{x=3x'}\\{y=2y'}\end{array}}\right.$D.$\left\{{\begin{array}{l}{x'=3x}\\{y'=2y}\end{array}}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.近年來我國電子商務(wù)行業(yè)迎來蓬勃發(fā)展的新機(jī)遇,2016年雙11期間,某平臺(tái)的銷售業(yè)績高達(dá)918億人民幣,與此同時(shí),相關(guān)管理部門也推出了針對(duì)電商的商品和服務(wù)評(píng)價(jià)體系,現(xiàn)從評(píng)價(jià)系統(tǒng)中隨機(jī)選出200次成功的交易,并對(duì)其評(píng)價(jià)結(jié)果進(jìn)行統(tǒng)計(jì),對(duì)商品的好評(píng)率為$\frac{3}{5}$,對(duì)服務(wù)的好評(píng)率為$\frac{3}{4}$,其中對(duì)商品和服務(wù)都做出好評(píng)的交易為80次.在犯錯(cuò)誤概率不超過( 。┑那疤嵯,認(rèn)為商品好評(píng)與服務(wù)好評(píng)有關(guān).
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
A.2.5%B.1%C.0.1%D.97.5%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.球和它的內(nèi)接正方體的表面積之比是$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若f(x)是定義在R上的函數(shù),對(duì)任意的實(shí)數(shù)x都有:f(x+6)≤f(x+2)+4和f(x+4)≥f(x+2)+2,且f(1)=1,則f(2017)=2017.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.用火柴棒擺“金魚”,如圖所示:

按照上面的規(guī)律,第5個(gè)“金魚”圖需要火柴棒的根數(shù)為(  )
A.28B.32C.40D.42

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知P(K2≥3.841)≈0.05,P(K2≥5.024)≈0.025.根據(jù)表中數(shù)據(jù),得到K2的觀測值k=$\frac{{50×{{(13×20-10×7)}^2}}}{23×27×20×30}$≈4.844,則有95%的把握認(rèn)為選修文科與性別有關(guān).
理科文科合計(jì)
131023
72027
合計(jì)203050

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在極坐標(biāo)系中,過點(diǎn)A(1,π)且垂直于極軸的直線的極坐標(biāo)方程為( 。
A.ρ=sinθB.ρ=1C.ρcosθ=-1D.ρsinθ=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知雙曲線$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{9}$=1在左支上一點(diǎn)M到右焦點(diǎn)F1的距離為16,N是線段MF1的中點(diǎn),O為坐標(biāo)原點(diǎn),則|ON|等( 。
A.4B.3C.2D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案