A. | [-7,26] | B. | [-1,20] | C. | [4,15] | D. | [1,15] |
分析 作出不等式組對應(yīng)的平面區(qū)域,設(shè)z=9x-y,利用z的幾何意義結(jié)合數(shù)形結(jié)合進(jìn)行求解即可.
解答 解:設(shè)z=9x-y,則y=9x-z,
作出不等式組對應(yīng)的平面區(qū)域如圖:
平移直線y=9x-z,由圖象知當(dāng)直線y=9x-z經(jīng)過點(diǎn)C時,直線的截距最大,此時z最小,
經(jīng)過點(diǎn)A時,直線的截距最小,此時z最大,
由$\left\{\begin{array}{l}{x-y=-4}\\{4x-y=5}\end{array}\right.$解得$\left\{\begin{array}{l}{x=3}\\{y=7}\end{array}\right.$,即C(3,7),此時z=3×9-7=20,
由$\left\{\begin{array}{l}{x-y=-1}\\{4x-y=-1}\end{array}\right.$解得$\left\{\begin{array}{l}{x=0}\\{y=1}\end{array}\right.$,即A(0,1),此時z=-1,
故-1≤z≤20,
故選:B
點(diǎn)評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.本題也可以使用不等式的性質(zhì)進(jìn)行求解.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24 | B. | 25 | C. | 26 | D. | 27 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | Sn=1-$\frac{1}{{2}^{n}}$ | B. | Sn=$\frac{2}{3}$-$\frac{2}{3•{4}^{n}}$ | C. | Sn=2n+1-2 | D. | Sn=$\frac{{4}^{n+1}-4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2或2$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com