4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,將函數(shù)g(x)=f(x)-x-1的零點(diǎn)按從小到大的順序排列,構(gòu)成數(shù)列{an},則該數(shù)列的通項(xiàng)公式為(  )
A.an=n-1B.an=n-2C.an=n(n-1)D.an=2n-2

分析 根據(jù)函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,h(x)=x+1,畫(huà)出圖象,得出等差數(shù)列即可得出數(shù)列通項(xiàng)公式.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+1,-1≤x≤0}\\{f(x-1)+1,x>0}\end{array}\right.$,
h(x)=x+1,f(x)=f(x-1)+1,x>0,
函數(shù)的x增加1,函數(shù)值增加1,
作出y=f(x)和y=h(x)的圖象,如圖:
根據(jù)f(x)與y=x+1的交點(diǎn)判斷
函數(shù)g(x)=f(x)-x-1的零點(diǎn),
a1=-1,a2=0,a3=1,
通過(guò)圖象可判斷{an}為等差數(shù)列,
得出:an=n-2,
故選;B.

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn),與函數(shù)圖象的交點(diǎn)問(wèn)題,屬于運(yùn)用圖象,結(jié)合等差數(shù)列的知識(shí)綜合考查的題目,關(guān)鍵是運(yùn)用分段函數(shù)畫(huà)出圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.把函數(shù)y=sinx圖象上所有點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,且橫坐標(biāo)保持不變,得到圖象C1,再把圖象C1沿著x軸向右平移$\frac{π}{4}$單位得到圖象C2,最后把圖象C2沿著y軸向上平移一個(gè)單位得到圖象C3,則圖象C3的函數(shù)表達(dá)式為$y=2sin(x-\frac{π}{4})+1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知數(shù)列{an}的各項(xiàng)均為正數(shù),a1=1,an+1=$\frac{{a}_{n}}{\sqrt{1+{{a}^{2}}_{n}}}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=$\frac{{a}_{n}•{a}_{n+1}}{{a}_{n}+{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求經(jīng)過(guò)點(diǎn)M(2,6),且在兩坐標(biāo)軸上的截距之和為15的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知$\overrightarrow{a}$=(4,2),$\overrightarrow$=(6,y),若$\overrightarrow{a}$∥$\overrightarrow$,則y等于( 。
A.-12B.-3C.3D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\frac{1}{2}$x2-x,則f(x)的單調(diào)遞增區(qū)間是( 。
A.(-∞,-1)和(0,+∞)B.(0,+∞)C.(-1,0)和(1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.用Venn圖畫(huà)出表示下列關(guān)系的圖象并描出集合所表示的區(qū)域:
(1)全集為U,A⊆B,∁U(A∩B);
(2)全集為U,A∩B=∅,∁U(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.給出下列命題:
①對(duì)任意實(shí)數(shù)y,都存在一個(gè)實(shí)數(shù)x,使得y=x2
②兩個(gè)非零向量$\overrightarrow{a}$與$\overrightarrow$垂直的充要條件是|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|
③存在一個(gè)實(shí)數(shù)x,使x2-x+2≤0,
其中真命題的序號(hào)是( 。
A.②③B.C.①②③D.①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.股票交易的開(kāi)盤價(jià)是這樣確定的:每天開(kāi)盤前,由投資者填報(bào)某種股票的意向買價(jià)或意向賣價(jià)以及相應(yīng)的意向股數(shù),然后由計(jì)算機(jī)根據(jù)這些數(shù)據(jù)確定適當(dāng)?shù)膬r(jià)格,使得在該價(jià)位上能夠成交的股數(shù)最多.(注:當(dāng)賣方意向價(jià)不高于開(kāi)盤價(jià),同時(shí)買方意向價(jià)不低于開(kāi)盤價(jià),能夠成交)根據(jù)以下數(shù)據(jù),這種股票的開(kāi)盤價(jià)為2.2元,能夠成交的股數(shù)為600.
賣家意向價(jià)(元)2.12.22.32.4
意向股數(shù)200400500100
買家意向價(jià)(元)2.12.22.32.4
意向股數(shù)600300300100

查看答案和解析>>

同步練習(xí)冊(cè)答案