A. | (-∞,-1)和(0,+∞) | B. | (0,+∞) | C. | (-1,0)和(1,+∞) | D. | (1,+∞) |
分析 根據(jù)題意,對(duì)于函數(shù)f(x)=$\frac{1}{2}$x2-x,結(jié)合二次函數(shù)的性質(zhì)可得其開口方向與對(duì)稱軸方程,進(jìn)而可得其單調(diào)遞增區(qū)間,即可得答案.
解答 解:根據(jù)題意,函數(shù)f(x)=$\frac{1}{2}$x2-x為二次函數(shù),其開口方向向上,
其對(duì)稱軸為x=-$\frac{-1}{2×\frac{1}{2}}$=1,
則f(x)的單調(diào)遞增區(qū)間是(1,+∞);
故選:D.
點(diǎn)評(píng) 本題考查二次函數(shù)的性質(zhì),注意結(jié)合二次函數(shù)的圖象進(jìn)行分析.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | πf(1)>ef(lnπ) | B. | πf(1)=ef(lnπ) | ||
C. | πf(1)<ef(lnπ) | D. | πf(1)與ef(lnπ)的大小不確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n(n+1) | B. | n(n-1) | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{n(n-1)}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | an=n-1 | B. | an=n-2 | C. | an=n(n-1) | D. | an=2n-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {y|0<y≤1} | B. | {y|0≤y<1} | C. | {y|0≤y<3} | D. | {y|0<y<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com