特稱命題:“?x∈R,x2-2x+1=0”的否定是
 
考點(diǎn):命題的否定
專題:簡易邏輯
分析:直接利用特稱命題的否定是全稱命題寫出結(jié)果即可.
解答: 解:因?yàn)樘胤Q命題的否定是全稱命題,所以特稱命題:“?x∈R,x2-2x+1=0”的否定是:?x∈R,x2-2x+1≠0.
故答案為:?x∈R,x2-2x+1≠0.
點(diǎn)評:本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一種設(shè)備的價(jià)值為a元,設(shè)備的維修和消耗費(fèi)用第一年為b元,以后每年增加b元,用t表示設(shè)備使用的年數(shù),用y表示設(shè)備的年平均費(fèi)用,則y=設(shè)備年平均維修費(fèi)和消耗費(fèi)用+設(shè)備價(jià)值的年折舊.(注:年折舊=設(shè)備價(jià)值÷使用年數(shù))
(Ⅰ) 寫出y關(guān)于t的函數(shù)關(guān)系式;
(Ⅱ) 若a=450000元,b=1000元時(shí),求這種設(shè)備的最佳使用年限(使年平均費(fèi)用最低的t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在直角坐標(biāo)系中曲線C1的參數(shù)方程為
x=t+
1
t
y=t2+
1
t2
(t為參數(shù)且t≠0),在以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立的極坐標(biāo)系中曲線C2的極坐標(biāo)方程為θ=
π
4
(ρ∈R),則曲線C1與C2交點(diǎn)的直角坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
b
c
=
a
b
c
 
.(判斷對錯(cuò))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某50件商品中有15件一等品,其余為二等品,現(xiàn)從中隨機(jī)選購2件,若X表示所購2件中的一等品的件數(shù),則P(X≤1)=
 
.(用分?jǐn)?shù)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖是求一個(gè)數(shù)a的絕對值的算法并畫出相應(yīng)的流程圖,則判斷框內(nèi)的條件為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a
c
=
b
c
a
=
b
 
(判斷對錯(cuò))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,I是內(nèi)心,∠BIC=140°,則∠A的度數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

“復(fù)數(shù)z∈R”是“
1
z
=
1
.
z
”的
 

查看答案和解析>>

同步練習(xí)冊答案