6.下列有關(guān)命題的說法正確的有①②④(填寫序號)
①命題“若x2-3x+2=0,則xx=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”
②“x=1”是“x2-3x+2=0”的充分不必要條件
③若p∧q為假命題,則p.q均為假命題
④對于命題p:?x∈R使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0.

分析 對4個命題分別進行判斷,即可得出結(jié)論.

解答 解:①命題“若x2-3x+2=0,則x=1”的逆否命題是:“若x≠1,則x2-3x+2≠0”,正確;
②若x=1,則x2-3x+2=1-3+2=0成立,即充分性成立;若x2-3x+2=0,則x=1或x=2,此時x=1不一定成立,即必要性不成立,故“x=1”是“x2-3x+2=0”的充分不必要條件,正確;
③若p∧q為假命題,則p、q至少有一個為假命題,不正確
④對于命題p:?x∈R使得x2+x+1<0,則¬p:?x∈R,均有x2+x+1≥0,正確.
故答案為:①②④

點評 此題注重對基礎(chǔ)知識的考查,特別是四種命題之間的真假關(guān)系,復(fù)合命題的真假關(guān)系,特稱命題與全稱命題的真假及否定,是學(xué)生易錯點,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在區(qū)間[0,4]上任取一個實數(shù)x,則x>2的概率是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.有下列敘述:
①若$\overrightarrow{a}$=(1,k),$\overrightarrow$=(-2,6),$\overrightarrow{a}$∥$\overrightarrow$,則k=-3;
②終邊在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
③已知f(x)是定義在R上的不恒為0的函數(shù),若a,b是任意的實數(shù),都有f(a•b)=f(a)+f(b),則y=f(x)的偶函數(shù);
④函數(shù)y=sin(x-$\frac{π}{2}$)在[0,π]上是減函數(shù);
⑤已知A和B是單位圓O上的兩點,∠AOB=$\frac{2}{3}$π,點C在劣弧$\widehat{AB}$上,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中,x,y∈R,則x+y的最大值是2;
以上敘述正確的序號是①③⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=\left\{\begin{array}{l}{({x+1})^2},x≤0\\ \left|{{{log}_2}x}\right|,x>0\end{array}\right.$,若方程f(x)=a有四個不同的解x1,x2,x3,x4,且x1<x2<x3<x4,則${x_3}({{x_1}+{x_2}})+\frac{1}{{x_3^2{x_4}}}$的取值范圍為(  )
A.(-1,+∞)B.(-1,1]C.(-∞,1)D.[-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l1和l2在y軸上的截距相等,且它們的斜率互為相反數(shù).若直線l1過點P(1,3),且點Q(2,2)到直線l2的距離為$\sqrt{5}$,求直線l1和直線l2的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=x-x3-1的圖象在點(1,-1)處的切線與直線4x+ay+3=0 垂直,則a=( 。
A.8B.-8C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}的前n項和為Sn,且a1=1,Sn=Sn-1+an-1+2n-2.(n≥2)
(1)求數(shù)列{an}的通項公式;
(2)若xn=1+$\frac{1}{{a}_{n}}$,設(shè)數(shù)列{xn}的前n項積為Tn,求證:
①(1+$\frac{1}{{2}^{n-1}}$)<(1+$\frac{1}{{2}^{n}}$)2(n∈N*);
②Tn≤2(1+$\frac{1}{{2}^{n}}$)${\;}^{{2}^{n}-2}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知f(x)=ax-a-x(其中0<a<1,x∈R).
(1)判斷并證明f(x)的奇偶性與單調(diào)性;
(2)若f(-2x2+3x)+f(m-x-x2)>0對任意的x∈[0,1]均成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若函數(shù)f(x)=|x+1|+|ax-1|是偶函數(shù),則a=1.

查看答案和解析>>

同步練習(xí)冊答案