11.已知sinα=$\frac{1}{2}$,α∈(0,$\frac{π}{2}$).
(1)求tanα的值;
(2)求cos(α+$\frac{π}{6}$)的值.

分析 (1)由已知利用同角三角函數(shù)基本關(guān)系式可求cosα,進(jìn)而可求tanα的值;
(2)利用兩角和的余弦函數(shù)公式及特殊角的三角函數(shù)值即可計(jì)算得解.

解答 (本題滿分為6分)
解:(1)∵α∈(0,$\frac{π}{2}$).
∴cosα>0,
∴cos$α=\sqrt{1-si{n}^{2}α}$=$\sqrt{1-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
∴tan$α=\frac{sinα}{cosα}=\frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}}$=$\frac{\sqrt{3}}{3}$,…(4分);
(2)cos(α+$\frac{π}{6}$)=cosαcos$\frac{π}{6}$-sinαsin$\frac{π}{6}$=$\frac{\sqrt{3}}{2}×\frac{\sqrt{3}}{2}$-$\frac{1}{2}×\frac{1}{2}$=$\frac{1}{2}$…6分);(或求出角度再計(jì)算)

點(diǎn)評(píng) 本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角和的余弦函數(shù)公式及特殊角的三角函數(shù)值在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知Sn是數(shù)列{$\frac{n}{{2}^{n-1}}$}的前n項(xiàng)和,若不等式|λ+1|<Sn+$\frac{n}{{2}^{n-1}}$對(duì)一切n∈N*恒成立,則λ的取值范圍是-3<λ<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若tanα=-3,則$\frac{cosα+2sinα}{cosα-3sinα}$的值為$-\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.函數(shù)f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)f($\frac{α}{2}$)=$\frac{3}{5}$,α∈($\frac{π}{6}$,$\frac{2π}{3}$),求sin(2α+$\frac{2π}{3}$)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.某程序框圖如圖所示,若輸入x的值為1,則輸出y的值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知f(x)=$\frac{\sqrt{1-x}}{2{x}^{2}-3x-2}$,g(x)=x2+x-1(x∈R).
(1)求f(0),g[f(0)]的值;
(2)求f(x)的定義域,g(x)的值域;
(3)若g(x)=5,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.在△ABC中,角A、B、C所對(duì)的邊長(zhǎng)分別為a、b、c,且asinAsinB+bcos2A=$\sqrt{2}$a,則$\frac{a}$的值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知f(n)=22n+2-3n-4,存在正整數(shù)m,使n∈N*時(shí),能使m整除f(n),則m的最大值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積是( 。
A.2B.6C.$\frac{4}{3}$D.$\frac{8}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案