分析 利用錯位相減法計算可知Sn=4-$\frac{n+2}{{2}^{n-1}}$,化簡可知4-$\frac{1}{{2}^{n-2}}$≥2,從而問題轉(zhuǎn)化為解不等式|λ+1|<2,計算即得結(jié)論.
解答 解:∵Sn是數(shù)列{$\frac{n}{{2}^{n-1}}$}的前n項和,
∴Sn=1•$\frac{1}{{2}^{0}}$+2•$\frac{1}{2}$+3•$\frac{1}{{2}^{2}}$+…+n•$\frac{1}{{2}^{n-1}}$,
$\frac{1}{2}$Sn=1•$\frac{1}{2}$+2•$\frac{1}{{2}^{2}}$+…+(n-1)•$\frac{1}{{2}^{n-1}}$+n•$\frac{1}{{2}^{n}}$,
兩式相減,得:$\frac{1}{2}$Sn=1+$\frac{1}{2}$+$\frac{1}{{2}^{2}}$+…+$\frac{1}{{2}^{n-1}}$-n•$\frac{1}{{2}^{n}}$=$\frac{1-\frac{1}{{2}^{n}}}{1-\frac{1}{2}}$-n•$\frac{1}{{2}^{n}}$=2-$\frac{n+2}{{2}^{n}}$,
即Sn=4-$\frac{n+2}{{2}^{n-1}}$,
∴Sn+$\frac{n}{{2}^{n-1}}$=4-$\frac{n+2}{{2}^{n-1}}$+$\frac{n}{{2}^{n-1}}$=4-$\frac{1}{{2}^{n-2}}$,
∵$\frac{1}{{2}^{n-2}}$隨著n的增大而減小,
∴當(dāng)n=1時4-$\frac{1}{{2}^{n-2}}$取最小值4-$\frac{1}{{2}^{1-2}}$=2,
∴|λ+1|<2,解得:-3<λ<1,
故答案為:-3<λ<1.
點(diǎn)評 本題是一道關(guān)于數(shù)列與不等式的綜合題,考查錯位相減法,考查數(shù)列的單調(diào)性,注意解題方法的積累,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,2) | B. | (1,-3) | C. | (-1,3) | D. | (-1,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2π}{3}+4$ | B. | $\frac{2π+4}{3}$ | C. | $\frac{π}{3}+4$ | D. | $π+\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 27 | 31 | 35 | 41 | 49 | 56 | 62 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com