12.已知命題p:?x∈R,x2+x-6≤0,則命題¬p是( 。
A.?x∈R,x2+x-6>0B.?x∈R,x2+x-6>0C.?x∈R,x2+x-6>0D.?x∈R,x2+x-6<0

分析 利用全稱命題的否定是特稱命題寫出結(jié)果即可.

解答 解:因為全稱命題的否定是特稱命題,
所以,命題p:?x∈R,x2+x-6≤0,則命題¬p是?x∈R,x2+x-6>0.
故選:B.

點評 本題考查命題的否定,特稱命題與全稱命題的否定關(guān)系,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知集合A={x|-2≤x≤1},集合B={x|(x-a)(x-a-4)>0}
(1)當a=0時,求A∪B
(2)命題p:x∈A,命題q:x∈B,若p是q成立的充分不必要條件,則實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=sinx,x∈[0,2π].
(1)求f(x)的最大值及此時x的取值;
(2)求使$f(x)≥\frac{{\sqrt{2}}}{2}$的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.關(guān)于x的不等式|a-2x|>x-2在[0,2]上恒成立,則a的取值范圍是(-∞,0)∪(4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”,如圖是根據(jù)調(diào)查結(jié)果得到的2×2列聯(lián)表.
(Ⅰ)補全2×2列聯(lián)表,并據(jù)此資料判斷你是否有95%以上的把握認為“體育迷”與性別有關(guān)?
(Ⅱ)將日均收看該體育項目不低于50分鐘的觀眾稱為“超級體育迷”,已知有5名“超級體育迷”,其中3名男性2名女性,若從“超級體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
非體育迷體育迷合計
3015
451055
合計100
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量
 P(K2≥k) 0.05 0.01
 k 3.841 6.0635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.甲、乙二人參加一項抽獎活動,每人抽獎中獎的概率均為0.6,兩人都中獎的概率為0.4,則已知甲中獎的前提下乙也中獎的概率為(  )
A.$\frac{6}{25}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某農(nóng)村合作聯(lián)社欲種植一種農(nóng)作物,有A、B兩個品種供選擇,根據(jù)前期在8塊實驗田中的種植試驗,得出A、B兩個品種的每公頃產(chǎn)量如下(單位:kg/hm2
品種A403397390404388400412406
品種B419403412418408423400413
(Ⅰ)分別求出品種A和品種B的每公頃產(chǎn)量的樣本平均數(shù)和方差;根據(jù)試驗結(jié)果,你認為應(yīng)該種植哪一品種;
(Ⅱ)如果聯(lián)合社在一塊耕地上選擇種植A品種作物,其中種植成本為1000元,若根據(jù)試驗得知A品種作物的市場價格和這塊耕地上的產(chǎn)量均具有隨機性且互不影響,其具體情況如表:
A品種作物產(chǎn)量(kg)300500
概率0.50.5
A品種作物市場價格(元/kg)610
概率0.40.6
求在這塊耕地上種植A品種作物利潤為2000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)y=f(x2-1)的定義域為(-2,2),函數(shù)f(x)定義域為[-1,3).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.如圖,正四面體V-ABC中,D是棱VC的中點,則AD與面ABC所成角的正弦值為$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

同步練習(xí)冊答案