【題目】若實數(shù)a,b,c滿足loga3<logb3<logc3,則下列關(guān)系中不可能成立的(
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b

【答案】A
【解析】解:∵實數(shù)a,b,c滿足loga3<logb3<logc3,

y=logm3(0<m<1)是減函數(shù),y=logm3(m>1)是增函數(shù),

∴當(dāng)a,b,c均大于1時,a>b>c>1;

當(dāng)a,b,c均小于1時,1>a>b>c>0;

當(dāng)a,b,c中有1個大于1,兩個小于1時,c>1>a>b>0;

當(dāng)a,b,c中有1 個小于1,兩個大于1時,b>c>1>a>0.

故選:A.

【考點精析】通過靈活運用對數(shù)值大小的比較,掌握幾個重要的對數(shù)恒等式:,;常用對數(shù):,即;自然對數(shù):,即(其中…)即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A={x|3≤x≤7},B={x|2a<x<a+4}.
(1)當(dāng)a=1時,求A∩B和A∪B;
(2)若A∩B=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C經(jīng)過三個點A(4,1),B(6,﹣3),C(﹣3,0),則圓C的方程為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合M={x|x2﹣1≤0},N={x| <2x+1<4,x∈Z},則M∩N=(
A.{﹣1,0}
B.{1}
C.{﹣1,0,1}
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:“函數(shù) 在R上有零點”,命題q:函數(shù)f(x)= 在區(qū)間(1,+∞)內(nèi)是減函數(shù),若p∧q為真命題,則實數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的離心率 ,且過點Q
(1)求橢圓C的方程.
(2)橢圓C長軸兩端點分別為A,B,點P為橢圓上異于A,B的動點,定直線x=4與直線PA,PB分別交于M,N兩點,直線PA,PB的斜率分別為k1 , k2①證明
②若E(7,0),過E,M,N三點的圓是否過x軸上不同于點E的定點?若經(jīng)過,求出定點坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y= 的定義域為A,值域為B,則A∩B=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓C1:(x+1)2+y2=1,圓C2:(x﹣3)2+(y﹣4)2=1.
(Ⅰ)若過點C1(﹣1,0)的直線l被圓C2截得的弦長為 ,求直線l的方程;
(Ⅱ)圓D是以1為半徑,圓心在圓C3:(x+1)2+y2=9上移動的動圓,若圓D上任意一點P分別作圓C1的兩條切線PE,PF,切點為E,F(xiàn),求 的取值范圍;
(Ⅲ)若動圓C同時平分圓C1的周長、圓C2的周長,則動圓C是否經(jīng)過定點?若經(jīng)過,求出定點的坐標(biāo);若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1的棱長為1,N為CD1中點,M為線段BC1上的動點,(M不與B,C1重合)有四個命題:
①CD1⊥平面BMN;
②MN∥平面AB1D1;
③平面AA1CC1⊥平面BMN;
④三棱錐D﹣MNC的體積有最大值.
其中真命題的序號是

查看答案和解析>>

同步練習(xí)冊答案