【題目】已知集合M={x|x2﹣1≤0},N={x| <2x+1<4,x∈Z},則M∩N=( )
A.{﹣1,0}
B.{1}
C.{﹣1,0,1}
D.
【答案】A
【解析】解:集合M={x|x2﹣1≤0}={x|﹣1≤x≤1},
N={x| <2x+1<4,x∈Z}={x|﹣2<x<1,x∈Z}={﹣1,0},
則M∩N={﹣1,0}
故選:A
【考點(diǎn)精析】關(guān)于本題考查的集合的交集運(yùn)算和指、對(duì)數(shù)不等式的解法,需要了解交集的性質(zhì):(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立;指數(shù)不等式的解法規(guī)律:根據(jù)指數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化;對(duì)數(shù)不等式的解法規(guī)律:根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)轉(zhuǎn)化才能得出正確答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如表為“五點(diǎn)法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時(shí)的五個(gè)關(guān)鍵點(diǎn)的坐標(biāo)(其中A>0,ω>0,|φ|<π)
x | ﹣ | ||||
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)請(qǐng)寫(xiě)出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知全集U=R,集合A={x|1<2x﹣1<5},B={y|y=( )x , x≥﹣2}.
(1)求(UA)∩B;
(2)若集合C={x|a﹣1<x﹣a<1},且CA,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos(x﹣ )﹣sin(x﹣ ). (Ⅰ)判斷函數(shù)f(x)的奇偶性,并給出證明;
(Ⅱ)若θ為第一象限角,且f(θ+ )= ,求cos(2θ+ )的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直四棱柱ABCD﹣A1B1C1D1的底面ABCD是菱形,∠ADC=120°,AA1=AB=1,點(diǎn)O1、O分別是上下底菱形對(duì)角線的交點(diǎn).
(1)求證:A1O∥平面CB1D1;
(2)求點(diǎn)O到平面CB1D1的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】從雙曲線 =1(a>0,b>0)的左焦點(diǎn)F引圓x2+y2=a2的切線,切點(diǎn)為T(mén),延長(zhǎng)FT交雙曲線右支于點(diǎn)P,若M為線段FP的中點(diǎn),O為坐標(biāo)原點(diǎn),則|MO|﹣|MT|與b﹣a的大小關(guān)系為( )
A.|MO|﹣|MT|>b﹣a
B.|MO|﹣|MT|=b﹣a
C.|MP|﹣|MT|<b﹣a
D.不確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若實(shí)數(shù)a,b,c滿足loga3<logb3<logc3,則下列關(guān)系中不可能成立的( )
A.a<b<c
B.b<a<c
C.c<b<a
D.a<c<b
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路段汽車(chē)的車(chē)流量y(千輛/小時(shí))與汽車(chē)的平均速度υ(千米/小時(shí))之間的函數(shù)關(guān)系為:y= (υ>0).
(1)在該時(shí)段內(nèi),當(dāng)汽車(chē)的平均速度υ為多少時(shí),車(chē)流量最大?最大車(chē)流量為多少?(保留分?jǐn)?shù)形式)
(2)若要求在該時(shí)段內(nèi)車(chē)流量超過(guò)10千輛/小時(shí),則汽車(chē)的平均速度應(yīng)在什么范圍內(nèi)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費(fèi)用y(萬(wàn)元),有如下的統(tǒng)計(jì)資料:
x | 1 | 2 | 3 | 4 | 5 |
y | 5 | 6 | 7 | 8 | 10 |
由資料可知y對(duì)x呈線性相關(guān)關(guān)系,且線性回歸方程為 ,請(qǐng)估計(jì)使用年限為20年時(shí),維修費(fèi)用約為( )
A.26.2
B.27
C.27.6
D.28.2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com