1.雙曲線$\frac{x^2}{m}-\frac{y^2}{n}=1({m>0,n>0})$和橢圓$\frac{x^2}{a}+\frac{y^2}=1({a>b>0})$有相同的焦點(diǎn)F1,F(xiàn)2,M為兩曲線的交點(diǎn),則|MF1|•|MF2|等于(  )
A.a+mB.b+mC.a-mD.b-m

分析 利用橢圓、雙曲線的定義,即可得出結(jié)論.

解答 解:由題意,雙曲線$\frac{x^2}{m}-\frac{y^2}{n}=1({m>0,n>0})$和橢圓$\frac{x^2}{a}+\frac{y^2}=1({a>b>0})$有相同的焦點(diǎn)F1,F(xiàn)2,M為兩曲線的交點(diǎn)
不妨設(shè)M是第一象限內(nèi)的點(diǎn),則|MF1|-|MF2|=2$\sqrt{m}$,|MF1|+|MF2|=2$\sqrt{a}$,
∴|MF1|=$\sqrt{m}$+$\sqrt{a}$,|MF2|=$\sqrt{a}$-$\sqrt{m}$,
∴|MF1|•|MF2|=a-m.
故選:C.

點(diǎn)評(píng) 本題考查橢圓、雙曲線的定義,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知θ∈(0,π),tanθ=-$\frac{3}{2}$,則cosθ=( 。
A.$\frac{3}{{\sqrt{13}}}$B.$-\frac{2}{{\sqrt{13}}}$C.$\frac{2}{{\sqrt{13}}}$D.$-\frac{3}{{\sqrt{13}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,多面體ABCDEF中,已知ABCD是邊長(zhǎng)為3的正方形,△FBC中BC邊上的高為FH,EF⊥FH,EF∥AB,
(1)求證:平面FBC⊥平面ABCD;
(2)若FH=2,EF=$\frac{3}{2}$,求該多面體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=BC=4,AA1=2,則直線BC1與平面BB1D1D所成角的正弦值為( 。
A.$\frac{{\sqrt{6}}}{3}$B.$\frac{{2\sqrt{5}}}{5}$C.$\frac{{\sqrt{15}}}{5}$D.$\frac{{\sqrt{10}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.對(duì)變量x,y有觀測(cè)數(shù)據(jù)(xi,yi)(i=1,2,…,10),得散點(diǎn)圖(1);對(duì)變量u,v,有觀測(cè)數(shù)據(jù)(ui,vi)(i=1,2,…,10),得散點(diǎn)圖(2),由這兩個(gè)散點(diǎn)圖可以判斷(  )
A.變量x與y正相關(guān),u與v正相關(guān)B.變量x與y正相關(guān),u與v負(fù)相關(guān)
C.變量x與y負(fù)相關(guān),u與v正相關(guān)D.變量x與y負(fù)相關(guān),u與v負(fù)相關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)$z=\frac{2+i}{1-i}$(i為虛數(shù)單位),那么z的共軛復(fù)數(shù)為( 。
A.$\frac{3}{2}+\frac{3}{2}i$B.$\frac{1}{2}-\frac{3}{2}i$C.$\frac{1}{2}+\frac{3}{2}i$D.$\frac{3}{2}-\frac{3}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.命題:“?x∈R,x2-ax+1<0”的否定為?x∈R,x2-ax+1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)f(x)是定義在實(shí)數(shù)集R上的奇函數(shù),若x>0時(shí),f(x)=x•ex,則不等式f(x)>3x的解集為(  )
A.{x|-ln3<x<ln3}B.{x|x<-ln3,或x>ln3}
C.{x|-ln3<x<0,或x>ln3}D.{x|x<-ln3,或0<x<ln3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.函數(shù)f(x)=lnx-(k+1)x(k≥-1).
(1)若f(x)無(wú)零點(diǎn),求k的取整數(shù)時(shí)的最小值;
(2)若存在x∈[2e,3e]使得f(x)>0,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案