Processing math: 100%
14.已知橢圓E的中心在原點,焦點在x軸上,且橢圓的焦距為2,離心率為e=22
(Ⅰ)求橢圓E的方程;
(Ⅱ)過點(1,0)作直線l交E于P、Q兩點,試問:在x軸上是否存在一個定點M,使MPMQ為定值?若存在,求出這個定點M的坐標;若不存在,請說明理由.

分析 (I)設(shè)橢圓E的方程為x2a2+y22=1(a>b>0),由已知得:2c=2,ca=22,b2=a2-c2,聯(lián)立解得即可得出.
(Ⅱ)符合條件的點M存在,其坐標為540.證明如下:假設(shè)存在符合條件的點M(m,0),又設(shè)P(x1,y1),Q(x2,y2),則:MPMQ=x1x2-m(x1+x2)+m2+y1y2.分類討論:①當直線l的斜率存在時,設(shè)直線l的方程為:y=k(x-1),與橢圓方程聯(lián)立化為(2k2+1)x2-4k2x+(2k2-2)=0,利用根與系數(shù)的關(guān)系可得MPMQ=2m24m+1k2+m222k2+1,對于任意的k值,上式為定值,所以2m2-4m+1=2(m2-2),解得m.
②當直線l的斜率不存在時,直線l:x=1,x1x2=1,x1+x2=2,y1y2=-12.由m=54,代入得MPMQ即可得出.

解答 解:(I)設(shè)橢圓E的方程為x2a2+y22=1(a>b>0),
由已知得:2c=2,ca=22,b2=a2-c2,
聯(lián)立解得c=1,b=1,a=2
∴橢圓E的方程為x22+y2=1.
(Ⅱ)符合條件的點M存在,其坐標為540.證明如下:
假設(shè)存在符合條件的點M(m,0),又設(shè)P(x1,y1),Q(x2,y2),則:
MPMQ=x1x2-m(x1+x2)+m2+y1y2
①當直線l的斜率存在時,設(shè)直線l的方程為:y=k(x-1),
{y=kx1x22+y2=1,得(2k2+1)x2-4k2x+(2k2-2)=0,
∴x1+x2=4k22k2+1,x1•x2=2k222k2+1,
y1y2=k2(x1-1)(x2-1)=k2[-(x1+x2)+x1•x2+1]=-k22k2+1
MPMQ=2m24m+1k2+m222k2+1
對于任意的k值,上式為定值,所以2m2-4m+1=2(m2-2),解得m=54,此時MPMQ=-716為定值.
②當直線l的斜率不存在時,直線l:x=1,x1x2=1,x1+x2=2,y1y2=-12
由m=54,得MPMQ=1-2×54+2516-12=-716為定值.
綜上述①②知,符合條件的點M存在,其坐標為540

點評 本題考查了橢圓的標準方程及其性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、數(shù)量積運算性質(zhì),考查了分類討論方法、推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

4.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,將三角形繞直角邊AB旋轉(zhuǎn)一周所成的幾何體的體積為16π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)點P(x,y)是曲線a|x|+b|y|=1(a>0,b>0)上任意一點,其坐標(x,y)也滿足x2+y2+2x+1+x2+y22x+1≤22,則2a+b取值范圍為(  )
A.(0,2]B.[1,2]C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知fx=2+logx2x[144],試求y=[f(x)]2+f(x2)的值域[1,13].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.過拋物線C:y2=8x焦點的直線與C相交于A,B兩點,若線段AB中點的橫坐標為3,則|AB|=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設(shè)α,β為不重合的平面,m,n為不重合的直線,則下列命題正確的是(  )
A.若m∥α,n∥β,m⊥n,則α⊥βB.若m∥n,n∥α,α∥β,則m∥β
C.α∥β,m⊥α,n∥β⇒m⊥nD.若α⊥β,α∩β=n,m⊥n,則m⊥α

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知圓C1:x2+y2=4與圓C2:(x-1)2+(y-3)2=4,過動點P(a,b)分別作圓C1、圓C2的切線PM,PN,(M,N分別為切點),若|PM|=|PN|,則a2+b2-6a-4b+13的最小值是( �。�
A.5B.85C.2510D.13

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.函數(shù)y=f(x)導函數(shù)f'(x)的圖象如圖所示,則下列說法正確的是( �。�
A.函數(shù)y=f(x)在(-∞,0)上單調(diào)遞增B.函數(shù)y=f(x)的遞減區(qū)間為(3,5)
C.函數(shù)y=f(x)在x=0處取得極大值D.函數(shù)y=f(x)在x=5處取得極小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.在等比數(shù)列{an}中,已知a7•a19=8,則a3•a23=(  )
A.6B.7C.8D.9

查看答案和解析>>

同步練習冊答案