A. | (e,+∞) | B. | (0,e) | C. | $(0,\frac{1}{e})∪(1,e)$ | D. | $(\frac{1}{e},e)$ |
分析 求出函數(shù)的導(dǎo)數(shù),求出單調(diào)增區(qū)間,再判斷函數(shù)的奇偶性,則不等式$f(lnx)+f(ln\frac{1}{x})<2f(1)$,轉(zhuǎn)化為f(lnx)<f(1)即為f|lnx|)<f(1),則|lnx|<1,運(yùn)用對數(shù)函數(shù)的單調(diào)性,即可得到解集.
解答 解:函數(shù)f(x)=xsinx+cosx+x2的導(dǎo)數(shù)為:
f′(x)=sinx+xcosx-sinx+2x=x(2+cosx),
則x>0時(shí),f′(x)>0,f(x)遞增,
且f(-x)=xsinx+cos(-x)+(-x)2=f(x),
則為偶函數(shù),即有f(x)=f(|x|),
則不等式$f(lnx)+f(ln\frac{1}{x})<2f(1)$,即為f(lnx)<f(1)
即為f|lnx|)<f(1),
則|lnx|<1,即-1<lnx<1,解得,$\frac{1}{e}$<x<e.
故選:D.
點(diǎn)評 本題考查函數(shù)的單調(diào)性和奇偶性的運(yùn)用:解不等式,考查導(dǎo)數(shù)的運(yùn)用:判斷單調(diào)性,考查對數(shù)不等式的解法,屬于中檔題和易錯(cuò)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{4}$ | B. | $\frac{3\sqrt{3}}{4}$ | C. | $\frac{9\sqrt{3}}{4}$ | D. | $\frac{27\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{3}}{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4x±3y=0 | B. | 3x±4y=0 | C. | 16x±9y=0 | D. | 9x±16y=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com