分析 由條件利用同角三角函數(shù)的基本關(guān)系求得cosα,再利用兩角和的余弦公式求得cos($\frac{π}{3}$+α)的值
解答 解:∵sinα=$\frac{15}{17}$,α∈($\frac{π}{2}$,π),
∴cosα=-$\sqrt{1-si{n}^{2}α}$=-$\frac{8}{17}$,
∴cos($\frac{π}{3}$+α)=cos$\frac{π}{3}$cosα-sin$\frac{π}{3}$sinα=$\frac{1}{2}$×(-$\frac{8}{17}$)-$\frac{\sqrt{3}}{2}$×$\frac{15}{17}$=-$\frac{8+15\sqrt{3}}{34}$
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系、兩角和的余弦公式的應(yīng)用,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (e,+∞) | B. | (0,e) | C. | $(0,\frac{1}{e})∪(1,e)$ | D. | $(\frac{1}{e},e)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
男性 | 女性 | 合計(jì) | |
無(wú)酒駕習(xí)慣 | 31 | ||
有酒駕習(xí)慣 | 8 | ||
合計(jì) | 89 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{3}{2}$ | C. | 2 | D. | $\frac{5}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 經(jīng)過(guò)圓外一點(diǎn)與圓相切的直線至多有兩條 | |
B. | 經(jīng)過(guò)圓外一點(diǎn)與圓相切的直線有兩條 | |
C. | 經(jīng)過(guò)圓外一點(diǎn)與圓相切的直線不存在 | |
D. | 經(jīng)過(guò)圓外一點(diǎn)與圓相切的直線至多有一條 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a,b,c∈R,則“ax2+bx+c≥0”的充分條件是“b2-4ac≤0” | |
B. | 若a,b,c∈R,則“ab2>cb2”的充要條件是“a>c” | |
C. | “直線a∥b”是“直線a⊥平面α,直線b⊥平面α”的必要條件 | |
D. | b2=ac是a,b,c成等比數(shù)列的充要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 10 | C. | -10 | D. | 10或-10 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com