分析 化簡方程,求出log2a+log2b,即可求解結(jié)果.
解答 解:正實數(shù)a、b滿足log8a+log4b2=5,log8b+log4a2=5,
可得:$\frac{1}{3}$log2a+log2b=5…①,$\frac{1}{3}$log2b+log2a=5…②,
解①②得:log2a=$\frac{15}{4}$,log2b=$\frac{15}{4}$,
log4a+log8b2=$\frac{1}{2}$log2a+$\frac{2}{3}$log2b=$\frac{35}{8}$.
故答案為:$\frac{35}{8}$.
點評 本題考查函數(shù)的零點與方程的根的關(guān)系,對數(shù)運算法則的應(yīng)用,考查計算能力.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3$\sqrt{6}$ | B. | 4$\sqrt{6}$ | C. | 6$\sqrt{6}$ | D. | 12$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | g(x)的一條對稱軸方程為x=$\frac{π}{12}$ | B. | g(x)的值域為[-$\sqrt{2}$,$\sqrt{2}$] | ||
C. | 在(0,π)上單調(diào)遞減 | D. | 關(guān)于點($\frac{13π}{12}$,$\frac{1}{2}$)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com