19.甲乙兩人進(jìn)行象棋比賽,約定每局勝者得1分,負(fù)者得0分.若其中的一方比對(duì)方多得2分或下滿5局時(shí)停止比賽.設(shè)甲在每局中獲勝的概率為$\frac{2}{3}$,乙在每局中獲勝的概率為$\frac{1}{3}$,且各局勝負(fù)相互獨(dú)立.
(1)求沒下滿5局甲即獲勝的概率;
(2)設(shè)比賽停止時(shí)已下局?jǐn)?shù)為ξ,求ξ的分布列和數(shù)學(xué)期望Eξ.

分析 (1)沒下滿5局甲即獲勝有兩種情況:①是兩局后甲獲勝,②是四局后甲獲勝,由此利用互斥事件概率加法公式能求出甲獲勝的概率.
(2)依題意,ξ的所有取值為2,4,5,分別求出相應(yīng)的概率,由此能求出ξ的分布列和Eξ.

解答 解:(1)沒下滿5局甲即獲勝有兩種情況:
①是兩局后甲獲勝,此時(shí)p1=$\frac{2}{3}×\frac{2}{3}$=$\frac{4}{9}$,
②是四局后甲獲勝,此時(shí)p2=(${C}_{2}^{1}×\frac{2}{3}×\frac{1}{3}$)×$\frac{2}{3}×\frac{2}{3}$=$\frac{16}{81}$,
∴甲獲勝的概率p=p1+p2=$\frac{4}{9}+\frac{16}{81}$=$\frac{52}{81}$.
(2)依題意,ξ的所有取值為2,4,5,
設(shè)前4局每?jī)删直荣悶橐惠啠瑒t該輪結(jié)束時(shí)比賽停止的概率為:
($\frac{2}{3}$)2+($\frac{1}{3}$)2=$\frac{5}{9}$,
若該輪結(jié)束時(shí),比賽還將繼續(xù),則甲、乙在該輪中必是各得一分,
此時(shí),該輪比賽結(jié)果對(duì)下輪比賽結(jié)果是否停止沒有影響,
從而有:
P(ξ=2)=$\frac{5}{9}$,
P(ξ=4)=$\frac{4}{9}×\frac{5}{9}$=$\frac{20}{81}$,
P(ξ=5)=$(\frac{4}{9})^{2}$=$\frac{16}{81}$,
∴ξ的分布列為:

 ξ 2 4 5
 P $\frac{5}{9}$ $\frac{20}{81}$ $\frac{16}{81}$
∴Eξ=$2×\frac{5}{9}+4×\frac{20}{81}+5×\frac{16}{81}$=$\frac{250}{81}$.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意互斥事件概率加法公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知a,b,c∈R+,求證:$\frac{bc}{a}$+$\frac{ac}$+$\frac{ab}{c}$≥a+b+c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.當(dāng)x>y>e-1時(shí),證明不等式:exln(1+y)>eyln(1+x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.“ALS 冰桶挑戰(zhàn)賽”是一項(xiàng)社交網(wǎng)絡(luò)上發(fā)起的籌款活動(dòng),活動(dòng)規(guī)定:被邀請(qǐng)者要么在24小內(nèi)接受挑戰(zhàn),要么選為慈善機(jī)構(gòu)捐款(不接受挑戰(zhàn)),并且不能重復(fù)參加該活動(dòng),若被邀請(qǐng)者接受挑戰(zhàn),則他需在網(wǎng)絡(luò)上發(fā)布自己被冰水澆遍全身的視頻,然后便可以邀請(qǐng)另外3個(gè)人參與這項(xiàng)活動(dòng),假設(shè)每個(gè)人接受挑戰(zhàn)與不接受挑戰(zhàn)是等可能的,且互不影響,若某參與者接受挑戰(zhàn)后,對(duì)其他3個(gè)人發(fā)出邀請(qǐng),則這3個(gè)人中至少有2個(gè)接受挑戰(zhàn)的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知F1、F2是橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右焦點(diǎn),以F1F2為直徑的圓與橢圓在第一象限的交點(diǎn)為P,過點(diǎn)P向x軸作垂線,垂足為H,若|PH|=$\frac{a}{2}$,則此橢圓的離心率為( 。
A.$\frac{{\sqrt{5}-1}}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{17}-1}}{4}$D.2$\sqrt{2}$-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.質(zhì)檢部門從某超市銷售的甲、乙兩種食用油中分劃隨機(jī)抽取100桶檢測(cè)某項(xiàng)質(zhì)量指標(biāo),由檢測(cè)結(jié)果得到如下的頻率分布直方圖:

(I)寫出頻率分布直方圖(甲)中a的值;記甲、乙兩種食用油100桶樣本的質(zhì)量指標(biāo)的方差分別為${s}_{1}^{2}$,${s}_{2}^{2}$,試比較${s}_{1}^{2}$,${s}_{2}^{2}$的大。ㄖ灰髮懗龃鸢福
(Ⅱ)估計(jì)在甲、乙兩種食用油中隨機(jī)抽取1捅,恰有一個(gè)桶的質(zhì)量指標(biāo)大于20,且另一個(gè)不大于20的概率;
(Ⅲ)由頻率分布直方圖可以認(rèn)為,乙種食用油的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,δ2).其中 μ近似為樣本平均數(shù)$\overline{x}$,δ2近似為樣本方差${s}_{2}^{2}$,設(shè)X表示從乙種食用油中隨機(jī)抽取lO桶,其質(zhì)量指標(biāo)值位于(14.55,38.45)的桶數(shù),求X的數(shù)學(xué)期望.
注:①同一組數(shù)據(jù)用該區(qū)問的中點(diǎn)值作代表,計(jì)算得s2=$\sqrt{142.75}$≈11.95;
②若Z-N(μ,δ2),則P( μ-δ<Z<μ+δ)=0.6826,P(μ-2δ<Z<μ+2δ)=0.9544.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$)相鄰兩對(duì)稱中心之間的距離為$\frac{π}{2}$,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{3}$個(gè)單位所得圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱,則φ=( 。
A.-$\frac{π}{4}$B.-$\frac{π}{6}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知盒中有4個(gè)紅球,4個(gè)黃球,4個(gè)白球,且每種顏色的四個(gè)球均按A,B,C,D編號(hào).現(xiàn)從中摸出4個(gè)球(除顏色與編號(hào)外球沒有區(qū)別).
(Ⅰ)求恰好包含字母A,B,C,D的概率;
(Ⅱ)設(shè)摸出的4個(gè)球中出現(xiàn)的顏色種數(shù)為X,求隨機(jī)變量X的分布列和期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若正實(shí)數(shù)a、b滿足log8a+log4b2=5,log8b+log4a2=5,則log4a+log8b2=$\frac{35}{8}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案