1.已知函數(shù)f(x)=$\frac{(sinx-cosx)sin2x}{sinx}$,求:
(1)f($\frac{π}{4}$)的值;
(2)函數(shù)f(x)的最小正周期和值域.

分析 (1)由三角函數(shù)公式化簡可得f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)-1,代值計(jì)算可得f($\frac{π}{4}$);
(2)由周期公式可得周期,由三角函數(shù)式可得值域.

解答 解:(1)化簡可得f(x)=$\frac{(sinx-cosx)sin2x}{sinx}$
=$\frac{(sinx-cosx)•2sinxcosx}{sinx}$=(sinx-cosx)•2cosx
=2sinxcosx-2cos2x=sin2x-cos2x-1=$\sqrt{2}$sin(2x-$\frac{π}{4}$)-1,
∴f($\frac{π}{4}$)=$\sqrt{2}$sin(2×$\frac{π}{4}$-$\frac{π}{4}$)-1=0;
(2)由周期公式可得f(x)的最小正周期T=$\frac{2π}{2}$=π,
函數(shù)的值域?yàn)閇-$\sqrt{2}$-1,$\sqrt{2}$-1].

點(diǎn)評 本題考查三角函數(shù)恒等變換,涉及三角函數(shù)的周期和值域,屬基礎(chǔ)題..

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}是公比為q(q>0)的等比數(shù)列,其中a4=1,且a2,a3,a3-2成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和為Sn,求證:Sn<16(n∈N+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知i為虛數(shù)單位,復(fù)數(shù)z滿足zi=$\frac{3-i}{1+i}$,則復(fù)數(shù)z的模|z|=( 。
A.$\sqrt{3}$B.4C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=$\sqrt{3}sin\frac{x}{4}cos\frac{x}{4}+{cos}^{2}\frac{x}{4}$.
(Ⅰ)若f(a)=$\frac{3}{2}$,求tan(a+$\frac{π}{3}$)的值;
(Ⅱ)在△ABC中,角A,B,C的對邊分別是a,b,c,且滿足(2a-c)cosB=bcosC,若f(A)=$\frac{1+\sqrt{3}}{2}$,試證明:a2+b2+c2=ab+bc+ca.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}中,a1=0,an+1=an+2n-1(n∈N*).根據(jù)數(shù)列的首項(xiàng)和遞推公式,寫出它的前五項(xiàng)并歸納出通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(sinx)=sin($\frac{π}{2}$+2x),則f($\frac{1}{4}$)=(  )
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)=x(ex-e-x)-(2x+1)(e2x+1-e-2x-1),則滿足f(x)>0的實(shí)數(shù)x的取值范圍為-1<x<-$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)x,y滿足約束條件:$\left\{\begin{array}{l}{x≥1}\\{y≥\frac{1}{2}x}\\{2x+y≤10}\end{array}\right.$的可行域?yàn)镸.若存在正實(shí)數(shù)a,使函數(shù)y=2asin($\frac{x}{2}$+$\frac{π}{4}$)cos($\frac{x}{2}$+$\frac{π}{4}$)的圖象經(jīng)過區(qū)域M中的點(diǎn),則這時(shí)a的取值范圍是$[\frac{1}{2cos1},+∞)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知sinθ-cosθ=$-\frac{1}{5}$,且-π<θ<0,則tanθ的值為( 。
A.±$\frac{3}{4}$B.$\frac{3}{4}$或$\frac{4}{3}$C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案