6.已知f(sinx)=sin($\frac{π}{2}$+2x),則f($\frac{1}{4}$)=( 。
A.$\frac{7}{8}$B.-$\frac{7}{8}$C.-$\frac{3}{4}$D.$\frac{3}{4}$

分析 由誘導(dǎo)公式可得f(sinx)=1-2sin2x,代入已知化簡即可得解.

解答 解:∵f(sinx)=sin($\frac{π}{2}$+2x)=cos2x=1-2sin2x,
∴f($\frac{1}{4}$)=1-2×($\frac{1}{4}$)2=$\frac{7}{8}$.
故選:A.

點(diǎn)評 本題主要考查了運(yùn)用誘導(dǎo)公式化簡求值,函數(shù)解析式的求解及常用方法,屬于基本知識的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.給出如圖所示的流程圖,若要使輸入的x值與輸出的y值相等,則這樣的x值的個數(shù)是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:27是2的倍數(shù),q:27是3的倍數(shù),則在p,¬q,p∧q,p∨q這四個命題中,真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知數(shù)列{an}的通項(xiàng)公式為an=n(n+4)($\frac{2}{3}$)n,若數(shù)列最大項(xiàng)為ak,則k=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{(sinx-cosx)sin2x}{sinx}$,求:
(1)f($\frac{π}{4}$)的值;
(2)函數(shù)f(x)的最小正周期和值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.直線mx+y-m=0,無論m取任意實(shí)數(shù),它都過點(diǎn)(1,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)已知x+x-1=3,求x2+x-2的值;
(2)計(jì)算lg$\sqrt{5}$+lg$\sqrt{20}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列五個命題:
①直線l的斜率k∈[-1,1],則直線l的傾斜角的范圍是$α∈[{-\frac{π}{4},\frac{π}{4}}]$;
②直線l:y=kx+1與過A(-1,5),B(4,-2)兩點(diǎn)的線段相交,則k≤-4或$k≥-\frac{3}{4}$;
③如果實(shí)數(shù)x,y滿足方程(x-2)2+y2=3,那么$\frac{y}{x}$的最大值為$\sqrt{3}$;
④直線y=kx+1與橢圓$\frac{x^2}{5}+\frac{y^2}{m}=1$恒有公共點(diǎn),則m的取值范圍是m≥1;
⑤方程x2+y2+4mx-2y+5m=0表示圓的充要條件是$m<\frac{1}{4}$或m>1;
正確的是( 。
A.②③B.③④C.②⑤D.②③⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項(xiàng)和為Sn,Sn=2an+n-3,n∈N*
(1)證明數(shù)列{an-1}為等比數(shù)列,并求{an}的通項(xiàng)公式;
(2)求數(shù)列{nan}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案