19.姜堰某化學(xué)試劑廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得的利潤是$5x+1-\frac{3}{x}$千元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得利潤不低于30千元,求x的取值范圍;
(2)要使生產(chǎn)120千克該產(chǎn)品獲得的利潤最大,問:該工廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

分析 (1)利用已知條件列出不等式,即可求出x的取值范圍.
(2)利用換元法,結(jié)合二次函數(shù)的最值,求解函數(shù)的最值即可.

解答 (本題滿分16分)
解:(1)由題意可知:$2(5x+1-\frac{3}{x})≥30$,∴5x2-14x-3=(5x+1)(x-3)≥0,∴$x≤-\frac{1}{5}或x≥3$,…(4分)
又因為1≤x≤10,∴3≤x≤10…(6分)
(2)∵$y=\frac{120}{x}(5x+1-\frac{3}{x})=120(-\frac{3}{x^2}+\frac{1}{x}+5),x∈[1,10]$…(10分)
令$t=\frac{1}{x}∈[\frac{1}{10},1]$,∴y=120(-3t2+t+5)
當(dāng)$t=\frac{1}{6}$即x=6時,∴ymax=610千元.…(15分)
答:該工廠應(yīng)該選取6千克/小時生產(chǎn)速度,利潤最大,且最大利潤為610千元.…(16分)

點評 本題考查函數(shù)的模型的性質(zhì)與應(yīng)用,二次函數(shù)的性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=x2+ax+b.若方程f[f(x)]=0有四個不同的實數(shù)根x1,x2,x3,x4.且f(x1)=f(x2),x1+x2=-1.則實數(shù)b的取值范圍是b<$-\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若點A(1,0)和點B(5,0)到直線l的距離依次為1和2,則這樣的直線有4條.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)圓M過點A(0,2),且圓心M在曲線C:x2=4y上,EG是圓M在x軸上截得的弦,試探究當(dāng)M運動時.弦長|EG|是否為定值?為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.計算${(\frac{1}{2})^{-2}}$-lg2-lg5=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,設(shè)一條直線上三點A,B,P滿足$\overrightarrow{AP}$=λ$\overrightarrow{PB}$(λ≠-1),O是平面上任意一點,則( 。
A.$\overrightarrow{OP}$=$\frac{\overrightarrow{OA}+λ\overrightarrow{OB}}{1+λ}$(λ≠-1)B.$\overrightarrow{OP}$=$\frac{\overrightarrow{OA}+λ\overrightarrow{OB}}{1-λ}$
C.$\overrightarrow{OP}$=$\frac{\overrightarrow{OA}-λ\overrightarrow{OB}}{1+λ}$(λ≠-1)D.$\overrightarrow{OP}$=$\frac{\overrightarrow{OA}-2λ\overrightarrow{OB}}{1-λ}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知數(shù)列{an}滿足${a_1}+{a_2}+…+{a_n}={n^3}$,則a6+a7+a8+a9=( 。
A.729B.367C.604D.854

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示.已知E、F、G、H分別是四邊形ABCD各邊的中點.若EG⊥FH,求證:AC=BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若直線ax-by+2=0(a>0,b>0)經(jīng)過圓x2+y2+4x-4y-1=0的圓心,則$\frac{2}{a}+\frac{3}$的最小值為( 。
A.10B.$4+2\sqrt{6}$C.$5+2\sqrt{6}$D.$4\sqrt{6}$

查看答案和解析>>

同步練習(xí)冊答案