12.設集合A={x|-2<x<7 },B={x|x>1,x∈N},則A∩B的元素的個數(shù)為( 。
A.3B.4C.5D.6

分析 根據(jù)題意直接得出A∩B={x||-2<x<7,且x>1,x∈N}={2,3,4,5,6},即有5個元素.

解答 解:因為B={x|x>1,x∈N},且A={x|-2<x<7 },
所以,A∩B={x||-2<x<7,且x>1,x∈N}
即A∩B={2,3,4,5,6},
因此,A與B的交集中含有5個元素,
答案為:C.

點評 本題主要考查了交集的運算和集合的表示,以及集合中元素個數(shù)的確定,屬于基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

19.已知點C(1,0),點A、B是⊙O:x2+y2=9上任意兩點,且滿足$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,點P為弦AB的中點,則點P的軌跡方程為x2-x+y2=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.某租賃公司擁有汽車100輛.當每輛車的月租金為3000元時,可全部租出,當每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需要維護費150元,未租出的車每輛每月需要維護費50元.,當每輛車的月租金定為x元時,租賃公司的月收益為y元,
(1)試寫出x,y的函數(shù)關(guān)系式(不要求寫出定義域);
(2)租賃公司某月租出了88輛車,求租賃公司的月收益多少元?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知非零數(shù)列{an}滿足a1=1,anan+1=an-2an+1(n∈N*).
(1)求證:數(shù)列$\left\{{1+\frac{1}{a_n}}\right\}$是等比數(shù)列;
(2)若關(guān)于n的不等式$\frac{1}{{n+{{log}_2}({1+\frac{1}{a_1}})}}+\frac{1}{{n+{{log}_2}({1+\frac{1}{a_2}})}}+…+\frac{1}{{n+{{log}_2}({1+\frac{1}{a_n}})}}$<m-3有解,求整數(shù)m的最小值;
(3)在數(shù)列$\left\{{1+\frac{1}{a_n}-{{({-1})}^n}}\right\}$中,是否存在首項、第r項、第s項(1<r<s≤6),使得這三項依次構(gòu)成等差數(shù)列?若存在,求出所有的r、s;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知數(shù)列{xn}為等差數(shù)列,且x1+x2+x3=5,x18+x19+x20=25,則數(shù)列{xn}的前20項的和為100.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C所對的邊分別為a,b,c,$\overrightarrow{m}$=(2a,1),$\overrightarrow{n}$=(2b-c,cosC),且$\overrightarrow{m}$∥$\overrightarrow{n}$
(1)求角A的值;
(2)若△ABC的外接圓直徑為$\frac{4\sqrt{3}}{3}$,且b+c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若實數(shù)x,y滿足$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$,則z=2x-y的最小值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列等式一定成立的是( 。
A.a${\;}^{-\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=0B.a${\;}^{\frac{1}{2}}$÷a${\;}^{\frac{1}{3}}$=a${\;}^{\frac{5}{6}}$
C.(a32=a9D.a${\;}^{\frac{1}{2}}$•a${\;}^{\frac{1}{2}}$=a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知全集U={1,2,3,4,5,6},A={1,2,5},B={2,3,4},則A∩(∁UB)=( 。
A.{2,6}B.{1,5}C.{1,6}D.{5,6}

查看答案和解析>>

同步練習冊答案