【題目】已知數(shù)列{an}滿足al=﹣2,an+1=2an+4.
(I)證明數(shù)列{an+4}是等比數(shù)列;
(Ⅱ)求數(shù)列{|an|}的前n項(xiàng)和Sn .
【答案】(I)證明:∵數(shù)列{an}滿足al=﹣2,an+1=2an+4,∴an+1+4=2(an+4),∴數(shù)列{an+4}是等比數(shù)列,公比與首項(xiàng)為2. (II)解:由(I)可得:an+4=2n , ∴an=2n﹣4,∴當(dāng)n=1時(shí),a1=﹣2;n≥2時(shí),an≥0,
∴n≥2時(shí),Sn=﹣a1+a2+a3+…+an=2+(22﹣4)+(23﹣4)+…+(2n﹣4)
= ﹣4(n﹣1)=2n+1﹣4n+2.n=1時(shí)也成立.
∴Sn=2n+1﹣4n+2.n∈N* .
【解析】(I)數(shù)列{an}滿足al=﹣2,an+1=2an+4,an+1+4=2(an+4),即可得出.(II)由(I)可得:an+4=2n , 可得an=2n﹣4,當(dāng)n=1時(shí),a1=﹣2;n≥2時(shí),an≥0,可得n≥2時(shí),Sn=﹣a1+a2+a3+…+an .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義為n個(gè)正數(shù)的“均倒數(shù)”.已知正項(xiàng)數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為.
(1)求數(shù)列{an}的通項(xiàng)公式.
(2)設(shè)數(shù)列的前n項(xiàng)和為,若4<對(duì)一切恒成立試求實(shí)數(shù)m的取值范圍.
(3)令,問(wèn):是否存在正整數(shù)k使得對(duì)一切恒成立,如存在求出k值,否則說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列四個(gè)命題:
①垂直于同一條直線的兩條直線平行;
②垂直于同一條直線的兩個(gè)平面平行;
③垂直于同一平面的兩個(gè)平面平行;
④垂直于同一平面的兩條直線平行.
其中正確的命題有(填寫所有正確命題的編號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)f(x)=sin2x+ cos2x圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再將圖象上所有點(diǎn)向右平移 個(gè)單位長(zhǎng)度,得到函數(shù)g (x)的圖象,則g(x)圖象的一條對(duì)稱軸方程是( )
A.x=一
B.x=
C.x=
D.x=
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(﹣x﹣1)=f(x﹣1),當(dāng)x∈[﹣1,0]時(shí),f(x)=﹣x3 , 則關(guān)于x的方程f(x)=|cosπx|在[﹣ , ]上的所有實(shí)數(shù)解之和為( )
A.﹣7
B.﹣6
C.﹣3
D.﹣1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為圓外一點(diǎn),若圓上存在一點(diǎn),使得,則正數(shù)的取值范圍是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐A﹣BCD中,已知三角形ABC和三角形DBC所在平面互相垂直,AB=BD,∠CBA=∠CBD= ,則直線AD與平面BCD所成角的大小是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)點(diǎn)A(0,4),且斜率為的直線與圓C:,相交于不同兩點(diǎn)M、N.
(1)求實(shí)數(shù)的取值范圍;
(2)求證:為定值;
(3)若O為坐標(biāo)原點(diǎn),問(wèn)是否存在以MN為直徑的圓恰過(guò)點(diǎn)O,若存在則求的值,若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l:y=k(x+2)與圓O:x2+y2=4相交于不重合的A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),且三點(diǎn)A、B、O構(gòu)成三角形.
(1)求k的取值范圍;
(2)三角形ABO的面積為S,試將S表示成k的函數(shù),并求出它的定義域;
(3)求S的最大值,并求取得最大值時(shí)k的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com