已知二次函數(shù)f(x)=x2-bx+c,f(0)=4,f(1+x)=f(1-x),則(  )

A.f(bx)≥f(cx) B.f(bx)≤f(cx)

C.f(bx)>f(cx) D.f(bx)<f(cx)

 

B

【解析】由f(0)=4,得c=4,由f(1+x)=f(1-x),知二次函數(shù)f(x)圖象的對(duì)稱軸為x=1,即=1,即b=2,故f(x)=x2-2x+4,bx=2x,cx=4x. 當(dāng)x≥0時(shí),cx≥bx≥1,而二次函數(shù)f(x)在(1,+∞)上單調(diào)遞增,故f(bx)≤f(cx);當(dāng)x<0時(shí),0<cx<bx<1,而二次函數(shù)f(x)在(-∞,1)上單調(diào)遞減,故f(bx)<f(cx).綜上可知選B.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-9函數(shù)模型及其應(yīng)用(解析版) 題型:選擇題

某種商品進(jìn)價(jià)為每件100元,按進(jìn)價(jià)增加25%出售,后因庫(kù)存積壓降價(jià),按九折出售,每件還獲利(  )

A.25元 B.20.5元 C.15元 D.12.5元

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-6對(duì)數(shù)與對(duì)數(shù)函數(shù)(解析版) 題型:填空題

已知函數(shù)f(x)=ln(1-)的定義域是(1,+∞),則實(shí)數(shù)a的值為_(kāi)_______.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-5指數(shù)及指數(shù)函數(shù)(解析版) 題型:選擇題

設(shè)a=40.8,b=80.46,c=()-1.2,則a,b,c的大小關(guān)系為(  )

A.a(chǎn)>b>c B.b>a>c C.c>a>b D.c>b>a

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:解答題

已知函數(shù)f(x)=xm-且f(4)=.

(1)求m的值;

(2)判定f(x)的奇偶性;

(3)判斷f(x)在(0,+∞)上的單調(diào)性,并給予證明.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-4二次函數(shù)與冪函數(shù)(解析版) 題型:選擇題

若函數(shù)y=ax與y=-在(0,+∞)上都是減函數(shù),則y=ax2+bx在(0,+∞)上(  )

A.單調(diào)遞增 B.單調(diào)遞減

C.先增后減 D.先減后增

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-3函數(shù)的奇偶性與周期性(解析版) 題型:解答題

設(shè)f(x)是(-∞,+∞)上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時(shí),f(x)=x.

(1)求f(π)的值;

(2)當(dāng)-4≤x≤4時(shí),求f(x)的圖象與x軸所圍圖形的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-2函數(shù)的單調(diào)性與最值(解析版) 題型:填空題

函數(shù)y=在(-2,+∞)上為增函數(shù),則a的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):2-11導(dǎo)數(shù)的應(yīng)用一(解析版) 題型:解答題

已知函數(shù)f(x)=(x2+ax-2a2+3a)ex(x∈R),其中a∈R.

(1)當(dāng)a=0時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線的斜率;

(2)當(dāng)a≠時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間與極值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案