若ξ~N(-1,62),且P(-3≤ξ≤-1)=0.4,則P(ξ≥1)等于
 
考點:正態(tài)分布曲線的特點及曲線所表示的意義
專題:計算題,概率與統(tǒng)計
分析:根據(jù)隨機變量ξ~N(-1,62),可得曲線的對稱軸為μ=-1,利用對稱性,即可求得P(ξ≥1).
解答: 解:∵隨機變量ξ~N(-1,62),
∴曲線的對稱軸為μ=-1
∵P(-3≤ξ≤-1)=0.4,
∴P(-1≤ξ≤1)=0.4,
∴P(ξ≥1)=0.5-0.4=0.1.
故答案為:0.1.
點評:本題考查正態(tài)分布,考查求概率,解題的關(guān)鍵是確定曲線的對稱軸為μ=1,利用對稱性解題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點O,焦點在x軸上,短軸長為2,離心率為
2
2
.求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
2
2
且與拋物線y2=4x有公共焦點F2
(Ⅰ)求橢圓方程;
(Ⅱ)設(shè)直線l:y=kx+m與橢圓交于M、N兩點,直線F2M與F2N傾斜角互補.證明:直線l過定點,并求該點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

非零向量
a
b
滿足|
a
|=|
b
|=|
a
+
b
|,則
b
a
-
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)直線l:
x=1+t
y=1+k•t
(t為參數(shù)),以坐標原點為極點,x軸非負半軸為極軸建立極坐標系,圓C:ρ=2cosθ+4sinθ,則直線l與圓C相交最短弦長為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,某池塘中浮萍蔓延的面積y(m2)與時間t(月)的關(guān)系y=at,有以下幾種說法:
①這個指數(shù)函數(shù)的底數(shù)為2;
②第5個月時,浮萍面積就會超過30m2;
③浮萍從4m2蔓延到12m2需要經(jīng)過1.5個月;
④浮萍每月增加的面積都相等.
其中正確的命題序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)集合M={x|-1≤x<2},N={x|x≤a},若M∩N≠∅,則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列4個命題,其中命題正確的有
 

①函數(shù)是其定義域到值域的映射;     
②f(x)=
x-3
+
2-x
是函數(shù);
③函數(shù)y=2x(x∈N)的圖象是一條直線;
④函數(shù)y=f(x)的圖象與直線x=1圖象最多只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學對函數(shù)f(x)=xcosx進行研究后,得出以下五個結(jié)論:
①函數(shù)y=f(x)的圖象是中心對稱圖形;
②對任意實數(shù)x,f(x)>0均成立;
③函數(shù)的圖象與x軸有無窮多個公共點,且任意相鄰兩點的距離相等;
④函數(shù)y=f(x)的圖象與直線y=x有無窮多個公共點,且任意相鄰兩點的距離相等;
⑤當常數(shù)k滿足|k|>1時,函數(shù)y=f(x)的圖象與直線y=kx有且僅有一個公共點.
其中所有正確結(jié)論的個數(shù)有(  )
A、1個B、2個C、3個D、4個

查看答案和解析>>

同步練習冊答案