分析 (Ⅰ)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義進(jìn)行求解即可.
(Ⅱ)求出切線斜率,結(jié)合切線方程進(jìn)行求解.
解答 解:(Ⅰ) 函數(shù)的導(dǎo)數(shù)f′(x)=$\frac{1}{2\sqrt{x}}$,
∴f′(4)=$\frac{1}{2\sqrt{4}}=\frac{1}{4}$,
即f(x)的圖象在點(4,2)處的切線斜率k=f′(4)=$\frac{1}{4}$.
(Ⅱ)∵切線斜率k=f′(4)=$\frac{1}{4}$,
∴對應(yīng)的切線方程為y-2=$\frac{1}{4}$(x-4),
即x-4y+4=0.
點評 本題主要考查函數(shù)的切線斜率,以及函數(shù)的切線方程,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)的幾何意義是解決本題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在(0,+∞)上是增函數(shù) | B. | f(x)在$(0,\frac{1}{e})$上是增函數(shù) | ||
C. | 當(dāng)x∈(0,1)時,f(x)有最小值$-\frac{1}{e}$ | D. | f(x)在定義域內(nèi)無極值 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2016f(2015)>2015f(2016) | B. | 2014f(2014)>2015f(2015) | ||
C. | 2015f(2016)>2016f(2015) | D. | 2015f(2015)>2014f(2014) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=$\frac{3}{2}$,y=4 | B. | x=-$\frac{3}{2}$,y=4 | C. | x=-$\frac{3}{2}$,y=-4 | D. | x=$\frac{3}{2}$,y=-4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com