16.在△ABC中,∠B=$\frac{π}{4}$,∠C=$\frac{5π}{12}$,AC=2$\sqrt{6}$,AC的中點(diǎn)為D,若長度為3的線段PQ(P在Q的左側(cè))在直線BC上滑動(dòng),則AP+DQ的最小值為$\frac{3\sqrt{10}+\sqrt{30}}{2}$.

分析 先求出BC=6,AB=3$\sqrt{2}$+$\sqrt{6}$.以BC所在直線為x軸,y軸經(jīng)過點(diǎn)A,建立坐標(biāo)系,則A(0,3+$\sqrt{3}$),設(shè)P(a,0),則Q(a+3,0),D($\frac{3-\sqrt{3}}{2}$,$\frac{3+\sqrt{3}}{2}$),求出AP+DQ,利用幾何意義,結(jié)合對稱性,即可得出結(jié)論.

解答 解:由題意,∠A=$\frac{π}{3}$.
由正弦定理可得$\frac{2\sqrt{6}}{\frac{\sqrt{2}}{2}}=\frac{BC}{\frac{\sqrt{3}}{2}}=\frac{AB}{\frac{\sqrt{6}+\sqrt{2}}{4}}$,
∴BC=6,AB=3$\sqrt{2}$+$\sqrt{6}$.
以BC所在直線為x軸,y軸經(jīng)過點(diǎn)A,建立坐標(biāo)系,則A(0,3+$\sqrt{3}$),
設(shè)P(a,0),則Q(a+3,0),D($\frac{3-\sqrt{3}}{2}$,$\frac{3+\sqrt{3}}{2}$)
∴AP+DQ=$\sqrt{(a-0)^{2}+[0-(3+\sqrt{3})]^{2}}$+$\sqrt{(a-\frac{3+\sqrt{3}}{2})^{2}+(0-\frac{3+\sqrt{3}}{2})^{2}}$
表示x軸上的點(diǎn)(a,0)與A(0,3+$\sqrt{3}$),($\frac{3+\sqrt{3}}{2}$,$\frac{3+\sqrt{3}}{2}$)的距離和,
利用對稱性,($\frac{3+\sqrt{3}}{2}$,$\frac{3+\sqrt{3}}{2}$)關(guān)于x軸的對稱點(diǎn)的坐標(biāo)為E($\frac{3+\sqrt{3}}{2}$,-$\frac{3+\sqrt{3}}{2}$),
可得AP+DQ的最小值為AE=$\sqrt{(0-\frac{3+\sqrt{3}}{2})^{2}+(3+\sqrt{3}+\frac{3+\sqrt{3}}{2})^{2}}$=$\frac{3\sqrt{10}+\sqrt{30}}{2}$.
故答案為:$\frac{3\sqrt{10}+\sqrt{30}}{2}$.

點(diǎn)評 本題考查解三角形的運(yùn)用,考查距離公式的運(yùn)用,考查學(xué)生分析解決問題的能力,難度大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.某圓錐的側(cè)面展開圖為半徑為1的半圓,則該圓錐底面半徑長為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在下列命題中:
①存在一個(gè)平面與正方體的12條棱所成的角都相等;
②存在一個(gè)平面與正方體的6個(gè)面所成較小的二面角都相等;
③存在一條直線與正方體的12條棱所成的角都相等;
④存在一條直線與正方體的6個(gè)面所成的角都相等.
其中真命題為①②③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.魯班鎖,是中國傳統(tǒng)的智力玩具,起源于古代漢族建筑中首創(chuàng)的榫卯結(jié)構(gòu),這種三維的拼插器具內(nèi)部的凹凸部分(即榫卯結(jié)構(gòu))嚙合,十分巧妙,原為木質(zhì)結(jié)構(gòu),外觀看是嚴(yán)絲合縫的十字立方體,其上下,左右,前后完全對稱,從外表上看,六根等長的正四棱柱體分成三組,經(jīng)90度榫卯起來,若正四棱柱體的高為4,底面正方形的邊長為1,則該魯班鎖的表面積為( 。
A.48B.60C.72D.84

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=log4(4x+1)+mx是偶函數(shù),2m=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知Sn是數(shù)列{an}的前n項(xiàng)和,a1=2且4Sn=an•an+1,(n∈N*),數(shù)列{bn}中,b1=$\frac{1}{4}$,且bn+1=$\frac{n_{n}}{(n+1)-_{n}}$(n∈N*),設(shè)cn=$\frac{{a}_{n}}{{2}^{\frac{1}{3_{n}}+\frac{2}{3}}}$,則{cn}的前n項(xiàng)和Tn=2-$\frac{2+n}{{2}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.《算數(shù)書》竹簡于上世紀(jì)八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍,其中記載有求“蓋”的術(shù):置如其周,令相承也,又以高乘之,三十六成一,該術(shù)相當(dāng)于給出了由圓錐的底面周長L與高h(yuǎn),計(jì)算其體積V的近似公式V≈$\frac{1}{36}$L2h,它實(shí)際上是將圓錐體積公式中的圓周率π近似取3,那么近似公式V≈$\frac{2}{75}$L2h相當(dāng)于將圓錐體積公式中的π近似取為$\frac{25}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.連鎖水果店店主每天以每件50元購進(jìn)水果若干件,以80元一件銷售;若供大于求,當(dāng)天剩余水果以40元一件全部退回;若供不應(yīng)求,則立即從連鎖店60元一件調(diào)劑,以80元一件銷售.
(1)若水果店一天購進(jìn)水果5件,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:件,n∈N*)的函數(shù)解析式;
(2)店主記錄了30天水果的日需求量n(單位:件)整理得表:
日需求量34567
頻數(shù)231564
若水果店一天購進(jìn)5件水果,以30天記錄的各需求量發(fā)生的頻率作為概率,求每天的利潤在區(qū)間[150,200]的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)$\overrightarrow{a}$,$\overrightarrow$均為非零向量,則“$\overrightarrow{a}$∥$\overrightarrow$”是“$\overrightarrow{a}$與$\overrightarrow$的方向相同”的( 。
A.充要條件B.充分但不必要條件
C.必要但不充分條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案