分析 根據(jù)函數(shù)圖象確定A,ω和φ的值即可得到結(jié)論.
解答 解:由圖象知A=2,由圖象知f(0)=-1,即f(0)=2sinφ=-1,
即sinφ=-$\frac{1}{2}$,
∵-π<φ≤π,∴φ=-$\frac{π}{6}$或φ=-$\frac{5π}{6}$,
∵函數(shù)的周期T∈(π,$\frac{3π}{2}$),即π<$\frac{2π}{ω}$<$\frac{3π}{2}$,
∴$\frac{4}{3}$<ω<2,
①若φ=-$\frac{π}{6}$,則f(x)=2sin(ωx-$\frac{π}{6}$),
由f(π)=2sin(ωπ-$\frac{π}{6}$)=0,
得ωπ-$\frac{π}{6}$=kπ,
則ω=k+$\frac{1}{6}$,此時ω不存在.
②若φ=-$\frac{5π}{6}$,則f(x)=2sin(ωx-$\frac{5π}{6}$),
由f(π)=2sin(ωπ-$\frac{5π}{6}$)=0,
得ωπ-$\frac{5π}{6}$=kπ,
則ω=k+$\frac{5}{6}$,則ω=$\frac{11}{6}$,
則f(x)=2sin($\frac{11}{6}$x-$\frac{5π}{6}$),
故答案為:f(x)=2sin($\frac{11}{6}$x-$\frac{5π}{6}$).
點評 本題主要考查三角函數(shù)解析式的求解,根據(jù)條件建立方程關系,利用五點對應法是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ln2+1 | B. | ln2-1 | C. | ln3+1 | D. | ln3-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 100 | B. | 110 | C. | 115 | D. | 120 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com