7.已知四邊形ABCD是⊙O的內(nèi)接梯形,AB∥CD,AB=8cm,CD=6cm,⊙O的半徑等于5cm,則梯形ABCD的面積為7cm2或49cm2

分析 過點O作OE⊥AB,E為垂足,OF⊥CD,F(xiàn)為垂足,由勾股定理得OE=3,OF=4,當(dāng)圓心O在梯形ABCD內(nèi)部時,EF=3+4=7,當(dāng)圓心O在梯形ABCD外部時,EF=4-3=1,由此能求出梯形ABCD的面積.

解答 解:連接OA,OB,OC,OD,
過點O作OE⊥AB,E為垂足,OF⊥CD,F(xiàn)為垂足,
E,O,F(xiàn)三點共線.
等腰三角形OAB中,AE=$\frac{AB}{2}$=4,
由勾股定理得,OE=$\sqrt{{5}^{2}-{4}^{2}}$=3
同理得,OF=$\sqrt{{5}^{2}-{3}^{2}}$=4,
當(dāng)圓心O在梯形ABCD內(nèi)部時,
EF=3+4=7,
∴梯形ABCD的面積S=$\frac{6+8}{2}×7$=49(cm2
當(dāng)圓心O在梯形ABCD外部時,
EF=4-3=1,
∴梯形ABCD的面積S=$\frac{6+8}{2}×1=7$(cm2).
故答案為:7cm2或49cm2

點評 本題考查梯形面積的求法,是中檔題,解題時要注意勾股定理的合理運用,易錯點是容量丟解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.方程tan(2x+$\frac{π}{3}$)=$\sqrt{3}$在區(qū)間[0,2π]上的解集為{0,$\frac{π}{2}$,π,$\frac{3π}{2}$,2π}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)關(guān)于x的不等式x(x-a-1)<0(a∈R)的解集為M,不等式x2-2x-3≤0的解集為N.
(1)當(dāng)a=1時,求集合M,N;
(2)若M∪N=N,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若方程x2+y2-2x-4y+m=0表示圓,則m的取值范圍是( 。
A.m≥5B.m≤5C.m>5D.m<5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某超市要將甲、乙兩種大小不同的袋裝大米分裝成A,B兩種規(guī)格的小袋,每袋大米可同時分得A,B兩種規(guī)格的小袋大米的袋數(shù)如下表所示:
規(guī)格類型
袋裝大米類型
AB
21
13
已知庫房中現(xiàn)有甲、乙兩種袋裝大米的數(shù)量分別為5袋和10袋,市場急需A,B兩種規(guī)格的成品數(shù)分別為15袋和27袋.
(Ⅰ)問分甲、乙兩種袋裝大米各多少袋可得到所需A,B兩種規(guī)格的成品數(shù),且使所用的甲、乙兩種袋裝大米的袋數(shù)最少?(要求畫出可行域)
(Ⅱ)若在可行域的整點中任意取出一解,求其恰好為最優(yōu)解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知$\overrightarrow{a},\overrightarrow$是單位向量,它們的夾角為1200,則$\overrightarrow{a}•(\overrightarrow{a}-\overrightarrow{4b})$的值為( 。
A.3B.-1C.$1+2\sqrt{3}$D.$1-2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知二次函數(shù)f(x)滿足f(-2)=f(4)=0,且f(x)在R上有最小值-9
(1)求f(x)的解析式    
(2)求不等式f(x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一天,小亮看到家中的塑料桶中有一個豎直放置的玻璃杯,桶子和玻璃杯的形狀都是圓柱形,桶口的半徑是杯口半徑的2倍,其主視圖如左圖所示.小亮決定做個試驗:把塑料桶和玻璃杯看作一個容器,對準(zhǔn)杯口勻速注水,注水過程中杯子始終豎直放置,則下列能反映容器最高水位h與注水時間t之間關(guān)系的大致圖象是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)f(x)=$\sqrt{x}$-alnx,a∈R
(1)若a=2,求f(x)的最值;
(2)若f(x)存在最小值,求其最小值g(a)的解析式.

查看答案和解析>>

同步練習(xí)冊答案