15.若方程x2+y2-2x-4y+m=0表示圓,則m的取值范圍是( 。
A.m≥5B.m≤5C.m>5D.m<5

分析 根據(jù)圓的一般式方程x2+y2 +dx+ey+f=0( d2+e2-4f>0),列出不等式4+16-4m>0,求m的取值范圍.

解答 解:關(guān)于x,y的方程x2+y2-2x-4y+m=0表示圓時(shí),應(yīng)有4+16-4m>0,解得 m<5,
故選:D.

點(diǎn)評(píng) 本題考查二元二次方程表示圓的條件,x2+y2 +dx+ey+f=0表示圓的充要條件是:d2+e2-4f>0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.若過(guò)點(diǎn)P1(2,3),P2(6,-1)的直線上一點(diǎn)P使|$\overrightarrow{P{P}_{1}}$|:|$\overrightarrow{P{P}_{2}}$|=3,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A{x|x2-5x+6=0,x∈R},B={x|0<x<5,x∈N},則滿足條件A⊆C⊆B的集合C的個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知α是三角形的內(nèi)角,sin(α+$\frac{π}{3}$)=$\frac{4}{5}$,則cos($\frac{5π}{12}$-α)=(  )
A.$\frac{\sqrt{2}}{10}$B.-$\frac{\sqrt{2}}{10}$C.-$\frac{7\sqrt{2}}{10}$D.$\frac{7\sqrt{2}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2cosxsin(x+$\frac{π}{3}$)-$\sqrt{3}$sin2x+sinxcosx.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)f(x)在[-$\frac{π}{2}$,$\frac{π}{2}$]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.若關(guān)于x的不等式ex-ax-b≥0對(duì)任意實(shí)數(shù)x恒成立,則ab的最大值為( 。
A.$\sqrt{e}$B.e2C.eD.$\frac{e}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知四邊形ABCD是⊙O的內(nèi)接梯形,AB∥CD,AB=8cm,CD=6cm,⊙O的半徑等于5cm,則梯形ABCD的面積為7cm2或49cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.給出如下命題,正確的序號(hào)是( 。
A.命題:?x∈R,x2≠x的否定是:?x0∈R,使得x02≠x
B.命題:若x≥2且y≥3,則x+y≥5的否命題為:若x<2且y<3,則x+y<5
C.若ω=1是函數(shù)f(x)=cosωx在區(qū)間[0,π]上單調(diào)遞減的充分不必要條件
D.命題:?x0∈R,x02+a<0為假命題,則實(shí)數(shù)a的取值范圍是a>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知集合A={x|-4<x≤7},B={x|-5≤x<6},N={x|a-4<x<a+8},全集U=R.
(Ⅰ)求A∩B,A∪B
(Ⅱ)若(CUB)∪N=R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案