分析 由題意,本題屬于幾何概型的概率求法,由此只要求出所有事件的區(qū)域長度以及滿足條件的a的范圍對應(yīng)的區(qū)域長度,利用幾何概型概率公式可求.
解答 解:∵函數(shù)f(x)=-x2+ax+2在區(qū)間(1,+∞)上是單調(diào)減函數(shù),
∴$\frac{a}{2}$≤1,
∴a≤2,
∵實數(shù)a在區(qū)間[1,m](m>1)隨機取值,
∴1≤a≤2,長度為1,
∵函數(shù)f(x)=-x2+ax+2在區(qū)間(1,+∞)上是單調(diào)減函數(shù)的概率為$\frac{1}{3}$,
∴1≤a≤m,長度為3,
∴m=4.
故答案為:4.
點評 本題主要考查幾何概型,考查二次函數(shù)的單調(diào)性,正確求出函數(shù)f(x)=-x2+ax+2在區(qū)間(1,+∞)上是單調(diào)減函數(shù)時a的范圍是關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{5}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{2}$ | B. | $\frac{1}{2},\frac{{\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3},\sqrt{6}$ | D. | $\frac{{\sqrt{2}}}{4},\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {(1,2)} | B. | (1,2) | C. | {1,2} | D. | {(1,2),(-1,-2)} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com