【題目】某市一農(nóng)產(chǎn)品近六年的產(chǎn)量統(tǒng)計(jì)如下表:

年份

2013

2014

2015

2016

2017

2018

年份代碼

1

2

3

4

5

6

年產(chǎn)量(千噸)

5.1

5.3

5.6

5.5

6.0

6.1

觀察表中數(shù)據(jù)看出,可用線性回歸模型擬合的關(guān)系.

(1)根據(jù)表中數(shù)據(jù),將以下表格空白部分的數(shù)據(jù)填寫完整,并建立關(guān)于的線性回歸方程

總和

均值

1

2

3

4

5

6

5.1

5.3

5.6

5.5

6.0

6.1

1

4

9

16

25

36

5.1

10.6

16.8

22

30

36.6

121.1

(2)若在2025年之前該農(nóng)產(chǎn)品每千克的價(jià)格(單位:元)與年產(chǎn)量滿足的關(guān)系式為,且每年該農(nóng)產(chǎn)品都能全部銷售.預(yù)測在2013~2025年之間,某市該農(nóng)產(chǎn)品的銷售額在哪一年達(dá)到最大.

附:對于一組數(shù)據(jù),,…,,其回歸直線的斜率和截距的最小二乘估計(jì)分別為: ,.

【答案】(1)見解析;(2)2020年

【解析】

(1)根據(jù)題中數(shù)據(jù),先完善表格;再由 ,,求出,進(jìn)而可求出結(jié)果;

(2)先由題意得到,進(jìn)而可得出結(jié)果.

解:(1)數(shù)據(jù)補(bǔ)充如下:

總和

均值

1

2

3

4

5

6

3.5

5.1

5.3

5.6

5.5

6.0

6.1

5.6

1

4

9

16

25

36

91

5.1

10.6

16.8

22

30

36.6

121.1

,

,

關(guān)于的線性回歸方程為.

(2)因?yàn)殇N售額銷售額價(jià)格,

所以,

所以當(dāng)時(shí),取得最大值.

由回歸直線方程知,當(dāng)時(shí),,

而年份代碼8對應(yīng)的年份為2020年,

所以在2013~2025年之間,某市該農(nóng)產(chǎn)品的銷售額在2020年達(dá)到最大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)命題:①任意兩條直線都可以確定一個(gè)平面;②若兩個(gè)平面有3個(gè)不同的公共點(diǎn),則這兩個(gè)平面重合;③直線a,b,c,若ab共面,bc共面,則ac共面;④若直線l上有一點(diǎn)在平面α外,則l在平面α.其中錯(cuò)誤命題的個(gè)數(shù)是(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過點(diǎn)垂直于軸的直線與拋物線相交于兩點(diǎn),拋物線兩點(diǎn)處的切線及直線所圍成的三角形面積為.

(1)求拋物線的方程;

(2)設(shè)是拋物線上異于原點(diǎn)的兩個(gè)動點(diǎn),且滿足,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中, , , ,直角梯形通過直角梯形以直線為軸旋轉(zhuǎn)得到,且使得平面平面 為線段的中點(diǎn), 為線段上的動點(diǎn).

)求證:

)當(dāng)點(diǎn)滿足時(shí),求證:直線平面

)當(dāng)點(diǎn)是線段中點(diǎn)時(shí),求直線和平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)點(diǎn),動點(diǎn)滿足,的軌跡為曲線.

(1)求曲線的方程;

(2)過定點(diǎn)作直線交曲線兩點(diǎn).設(shè)為坐標(biāo)原點(diǎn),若直線軸垂直,求面積的最大值;

(3)設(shè),在軸上,是否存在一點(diǎn),使直線的斜率的乘積為非零常數(shù)?若存在,求出點(diǎn)的坐標(biāo)和這個(gè)常數(shù);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量,記

1)若,求的值;

2)在銳角中,角的對邊分別是,且滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓Cx2+y2+x-6y+m=0與直線lx+2y-3=0

1)若直線l與圓C沒有公共點(diǎn),求m的取值范圍;

2)若直線l與圓C相交于P、Q兩點(diǎn),O為原點(diǎn),且OPOQ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

1)已知在區(qū)間上單調(diào)遞減,在區(qū)間上單調(diào)遞增,求實(shí)數(shù)的取值范圍.

2)若對任意的,不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中國古代儒家提出的六藝:禮樂射御書數(shù).某校國學(xué)社團(tuán)預(yù)在周六開展六藝課程講座活動,周六這天準(zhǔn)備排課六節(jié),每藝一節(jié),排課有如下要求:“不能相鄰,“要相鄰,則針對六藝課程講座活動的不同排課順序共有( )

A.18B.36C.72D.144

查看答案和解析>>

同步練習(xí)冊答案