9. 公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”.利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出n的值為( 。
(參考數(shù)據:$\sqrt{3}$≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12B.24C.36D.48

分析 列出循環(huán)過程中S與n的數(shù)值,滿足判斷框的條件即可結束循環(huán).

解答 解:模擬執(zhí)行程序,可得:
n=6,S=3sin60°=$\frac{3\sqrt{3}}{2}$,
不滿足條件S≥3.10,n=12,S=6×sin30°=3,
不滿足條件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,
滿足條件S≥3.10,退出循環(huán),輸出n的值為24.
故選:B.

點評 本題考查循環(huán)框圖的應用,考查了計算能力,注意判斷框的條件的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2016-2017學年廣東清遠三中高二上學期第一次月考數(shù)學(理)試卷(解析版) 題型:選擇題

已知某個三棱錐的三視圖如圖所示,其中正視圖是等邊三角形,側視圖是直角三角形,俯視圖是等腰直角三角形,則此三棱錐的體積等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.如圖所示,圖2中實線圍成的部分是長方體(圖1)的平面展開圖,其中四邊形ABCD是邊長為1的正方形,若向虛線圍成的矩形內任意拋擲一質點,它落在長方體的平面展開圖內的概率是$\frac{1}{4}$,則此長方體的表面積為14.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設函數(shù)$f(x)=\sqrt{3}sinx+cosx,x∈[{0,2π}]$,若0<a<1,則方程f(x)=a的所有根之和為( 。
A.$\frac{4π}{3}$B.C.$\frac{8π}{3}$D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.如圖,ABCD為矩形,C、D兩點在函數(shù)f(x)=$\left\{\begin{array}{l}{x+1,}&{x≥0}\\{-\frac{1}{2}x+1,}&{x<0}\end{array}\right.$的圖象上,點A、B在x軸上,且B(1,0),若在矩形ABCD內隨機取一點,則此點取自陰影部分的概率等于( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知復數(shù)z滿足$\frac{2z+m}{z-3}=i$,且z的實部與虛部之和為0,則實數(shù)m等于(  )
A.-3B.-1C.1D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在直角坐標平面上,已知點A(0,2),B(0,1),D(t,0)(t>0),M為線段AD上的動點,若|AM|≤2|BM|恒成立,則實數(shù)t的取值范圍為( 。
A.$[\frac{{2\sqrt{3}}}{3},+∞)$B.$[\frac{{\sqrt{3}}}{3},+∞)$C.$(0,\frac{{2\sqrt{3}}}{3}]$D.$(0,\frac{4}{3})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在△ABC中,三個內角A,B,C所對的邊分別為a,b,c,已知函數(shù)$f(x)=sin({2x+B})+\sqrt{3}cos({2x+B})$為偶函數(shù),$b=f({\frac{π}{12}})$
(1)求b;
(2)若a=3,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知數(shù)列前n項和Sn=(k-2)+kan,其中n∈N*,k>1且k≠2.
(I)證明:{an}是等比數(shù)列;
(Ⅱ)當{an}是遞增數(shù)列時,試確定k的取值范圍.

查看答案和解析>>

同步練習冊答案