8.設(shè)隨機變量X~N(μ,σ2),函數(shù)f(x)=x2+4x+ξ沒有零點的概率是$\frac{1}{2}$,則μ=( 。
A.1B.4C.2D.不確定

分析 由題中條件:“函數(shù)f(x)=x2+4x+ξ沒有零點”可得ξ>4,結(jié)合正態(tài)分布的圖象的對稱性可得μ值

解答 解:函數(shù)f(x)=x2+4x+ξ沒有零點,
即二次方程x2+4x+ξ=0無實根得ξ>4,
∵函數(shù)f(x)=x2+4x+ξ沒有零點的概率是0.5,
∴P(ξ>4)=0.5,
由正態(tài)曲線的對稱性知μ=4;
故選B.

點評 本題考查了正態(tài)分布以及概率;從形態(tài)上看,正態(tài)分布是一條單峰、對稱呈鐘形的曲線,其對稱軸為x=μ,并在x=μ時取最大

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

18.在△ABC中,已知AC=$\sqrt{19}$,BC=2,B=$\frac{2π}{3}$,則邊AC上的高為(  )
A.$\frac{3\sqrt{19}}{19}$B.$\frac{3\sqrt{57}}{19}$C.$\frac{\sqrt{3}}{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.定義在R上的函數(shù)f(x)滿足f(x+y)=f(x)+f(y),f(xy)=f(x)f(y),且x≠y時,f(x)≠f(y).
(1)判斷f(x)奇偶性;
(2)求證:f(x)是單調(diào)遞增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.過平面外一點作與該平面垂直的直線有1條,垂直的平面有無數(shù)個,平行的直線無數(shù)條,平行的平面1個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知關(guān)于x的不等式$\frac{x-1}{x+1}<0$的解集為P,不等式|x-1|≤1的解集Q.
求:(1)P∪Q; 
(2)(∁RP)∩Q.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若向量$\overrightarrow a=(3,1)$,$\overrightarrow b$=(m,m+1),且$\overrightarrow a$∥$\overrightarrow b$,則實數(shù)m的值為( 。
A.$-\frac{3}{2}$B.$-\frac{1}{4}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知A(-1,0),B(5,6),C(3,4),則$\frac{{|{CB}|}}{{|{AC}|}}$=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.3D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若f(x)=$\frac{1}{x+2}$+lg$\frac{1-x}{1+x}$,則不等式f[x(x-$\frac{1}{2}$)]<$\frac{1}{2}$的解集為(-1,0)∪($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若函數(shù)f(x)=ex-mx2定義域為(0,+∞),值域為[0,+∞),則m的值為$\frac{{e}^{2}}{4}$.

查看答案和解析>>

同步練習冊答案