分析 利用分段函數(shù),通過a的范圍,列出方程求解即可.
解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}-2{x^2}+1(x≥1)\\ lo{g_2}(1-x)(x<1)\end{array}\right.$,若f(f(a))=3,當(dāng)a≥1時(shí),
可得:f(-2a2+1)=3,可得log2(2a2)=3,解得a=2.
當(dāng)a<1時(shí),
可得:f(log2(1-a))=3,log2(1-a)>1時(shí),可得$-2(lo{g}_{2}(1-a))^{2}+1=3$,解得a∈∅.
log2(1-a)<1時(shí),可得log2(1-log2(1-a))=3,即1-log2(1-a)=8,log2(1-a)=-7,
1-a=$\frac{1}{128}$,可得a=$\frac{127}{128}$.
故答案為:2或$\frac{127}{128}$.
點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)的零點(diǎn)與方程根的關(guān)系,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 31 | B. | 32 | C. | 35 | D. | 37 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | l與C相交 | B. | l與C相切 | ||
C. | l與C相離 | D. | 以上三個(gè)選項(xiàng)均有可能 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0<a2+b2<1 | B. | 0<a2+b2<$\frac{1}{2}$ | C. | a2+b2≥1 | D. | a2+b2≥$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=2}\\{y=1}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (40,64) | B. | [40,64] | C. | (-∞,40)∪(64,+∞) | D. | (-∞,40]∪[64,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com