7.若直線x+2y+1=0與直線mx+y-2=0互相平行,則m的值為(  )
A.1B.$\frac{1}{2}$C.-2D.$-\frac{2}{3}$

分析 利用兩條直線平行,它們的斜率相等或斜率都不存在的性質(zhì)求解.

解答 解:∵直線x+2y+1=0與直線mx+y-2=0互相平行,
∴-$\frac{1}{2}$=-m,
∴m=$\frac{1}{2}$,
故選:B.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要注意直線與直線平行的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.求冪函數(shù)y=x${\;}^{\frac{2}{3}}$的定義域和值域,并畫出它的大致圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在平行四邊形ABCD中,AB=10$\sqrt{3}$,BC=CD=AD=10,設(shè)M為△ABD的面積,N為△BCD的面積,問(wèn):當(dāng)M2+N2為最大時(shí),△ABD是怎樣的三角形?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.若函數(shù)y=ln(a+e2x)-x為偶函數(shù),則常數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知兩個(gè)函數(shù)f1(x)=ln(|x-a|+2),f2(x)=ln(|x-2a+1|+1),a∈R.
(1)若a=0,求使得f1(x)=f2(x)的x的值;
(2)若|f1(x)-f2(x)|=f1(x)-f2(x)對(duì)于任意的實(shí)數(shù)x∈R恒成立,求實(shí)數(shù)a的取值范圍;
(3)求函數(shù)F(x)=$\frac{{f}_{1}(x)+{f}_{2}(x)}{2}$-$\frac{|{f}_{1}(x)-{f}_{2}(x)|}{2}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知l1:mx+y-2=0,l2:(m+1)x-2my+1=0,若l1⊥l2則m=( 。
A.m=0B.m=1C.m=0或m=1D.m=0或m=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.若直線ax+3y-5=0過(guò)連結(jié)A(-1,-2),B(2,4)兩點(diǎn)線段的中點(diǎn),求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知向量$\overrightarrow a=(cosx-sinx,2cosx)$,$\overrightarrow b=(cosx+sinx,sinx)(x∈R)$,則函數(shù)$f(x)={(\overrightarrow a•\overrightarrow b)^2}-1$是( 。
A.周期為π的偶函數(shù)B.周期為π的奇函數(shù)
C.周期為$\frac{π}{2}$的偶函數(shù)D.周期為$\frac{π}{2}$的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.某學(xué)校隨機(jī)調(diào)查了部分學(xué)生的上學(xué)所需時(shí)間(單位:分鐘),并將所得數(shù)據(jù)繪制成頻率分布直方圖(如圖),其中,上學(xué)所需時(shí)間的范圍是[0,100],樣本數(shù)據(jù)分組為[0,20),[20,40),[40,60),[60,80),[80,100]
(1)求圖中x的值;
(2)若上學(xué)所需時(shí)間不少于1小時(shí)的學(xué)生可申請(qǐng)?jiān)趯W(xué)習(xí)住宿,則該校3000名學(xué)生中,估計(jì)有多少名學(xué)生可以申請(qǐng)住宿.

查看答案和解析>>

同步練習(xí)冊(cè)答案