精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=cos2x-2
3
sinx•cosx.
(1)求f(x)最小正周期及最值;  
(2)若α∈(
π
2
,π),且f(α)=2,求f(α+
π
3
)的值.
考點:三角函數中的恒等變換應用,三角函數的周期性及其求法
專題:三角函數的圖像與性質
分析:(1)先利用二倍角公式和兩角和公式對函數解析式化簡,根據周期公式求得其最小正周期,根據正弦函數的圖象和性質求得最大和最小值.
(2)根據f(α)的值求得α的值,最后利用兩角和公式求得f(α+
π
3
).
解答: 解:(1)f(x)=cos2x-2
3
sinx•cosx=-2(sin2x•
3
2
-cos2x•
1
2
)=-2sin(2x-
π
6
)
,
所以T=
2
.[f(x)]max=2;[f(x)]min=-2.
(2)由(1)得,f(α)=-2sin(2α-
π
6
)=2
,
得:sin(2α-
π
6
)=-1
,即2α-
π
6
=
2
+2kπ,k∈Z
.得:α=
6
+kπ,k∈Z

又因為
π
2
<α<π
,所以α=
6

f(α+
π
3
)=f(
6
+
π
3
)=f(
6
)=-2sin(2•
6
-
π
6
)
=-2sin(
13π
6
)

=-2sin
π
6
=-2•
1
2
=-1
點評:本題主要考查了三角函數恒等變換的應用,三角函數圖象與性質.要求學生對三角函數圖象,基本公式能夠熟練記憶,并能靈活運用.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}的前n項和Sn=n3-10n2(?n∈N*).
(1)求an
(2)求集合{n|an<0,n∈N*}(用列舉法表示).

查看答案和解析>>

科目:高中數學 來源: 題型:

甲乙兩個班級均為40人,進行一門考試后,按學生考試成績及格與不及格進行統計,甲班及格人數為36人,乙班及格人數為24人.
(Ⅰ)根據以上數據建立一個2×2的列聯表;
(Ⅱ)試判斷能否有99.5%的把握認為“考試成績與班級有關”?參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
;n=a+b+c+d
P(K2>k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

設圓(x+1)2+y2=16的圓心為C,A(1,0)是圓內一點,Q為圓周上任意一點,線段AQ的垂直平分線與CQ的連線交于點M.
(1)求點M的軌跡T的方程;
(2)設直線l:y=kx+1-2k恒過點P,且與曲線T相交于不同的兩點B、D,若
PB
PD
5
4
,試求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tan(α-β)=-
1
3
,cos β=
5
5
,α,β∈(0,π).
(Ⅰ)求tanα的值;    
(Ⅱ)求
sin2α+sin2α
6cos2α+cos2α
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

a
=(cosx,sinx),
b
=(cosx,
3
cosx),f(x)=
a
b
,x∈R.
(1)求f(x)的單調遞增區(qū)間;
(2)當x∈[0,
π
2
]時,求f(x)的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

等比數列{an}中,a22=a3,a4=8,則Sn=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=2cos(2x-
3
),則下列結論正確的是
 
(寫出所有正確的編號).
①f(x)的最小正周期為π;
②f(x)在區(qū)間[
6
,
6
]上單調遞增;
③f(x)取得最大值的x的集合為{x|x=
π
3
+
k
2
π,k∈Z};
④將f(x)的圖象向左平移
12
個單位,得到一個奇函數的圖象;
⑤當x∈[
π
6
,
12
]時,關于x的方程f(x)-m=0有且只有一個實數根,則m∈[1,
3
).

查看答案和解析>>

科目:高中數學 來源: 題型:

在三棱錐S-ABC中,已知SA=4,SB≥7,SC≥9,AB=5,BC≤6,AC≤8.則三棱錐S-ABC體積的最大值為
 

查看答案和解析>>

同步練習冊答案