20.若x,y滿足$\left\{\begin{array}{l}{x≥1}\\{y≤2}\\{x-y≤0}\end{array}\right.$則x+y的最大值為( 。
A.5B.4C.3D.2

分析 畫出滿足條件的平面區(qū)域,求出角點(diǎn)的坐標(biāo),結(jié)合函數(shù)的圖象得出z的最大值即可.

解答 解:畫出滿足條件的平面區(qū)域,如圖示:
由$\left\{\begin{array}{l}{x-y=0}\\{y=2}\end{array}\right.$,解得A(2,2),
令z=x+y,則y=-x+z,
顯然直線過(guò)A(2,2)時(shí),z最大,
此時(shí)z=4,
故選:B.

點(diǎn)評(píng) 本題考查了簡(jiǎn)單的線性規(guī)劃問(wèn)題,考查數(shù)形結(jié)合思想,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.復(fù)數(shù)$\frac{5}{i-2}$等于( 。
A.2-iB.-2-iC.2+iD.-2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,焦點(diǎn)到短軸端點(diǎn)的距離為2,離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求該橢圓的方程;
(Ⅱ)若直線l與橢圓C交于A,B兩點(diǎn)且OA⊥OB,是否存在以原點(diǎn)O為圓心的定圓與直線l相切?若存在求出定圓方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知橢圓過(guò)A(-3,0)和B(0,4)兩點(diǎn),則橢圓的標(biāo)準(zhǔn)方程是$\frac{x^2}{9}+\frac{y^2}{16}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.O為平面上的定點(diǎn),A、B、C是平面上不共線的三點(diǎn),若($\overrightarrow{OA}$-$\overrightarrow{OC}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$-2$\overrightarrow{OB}$)=0,則△ABC是(  )
A.以AB為底邊的等腰三角形B.以AB為斜邊的直角三角形
C.以AC為底邊的等腰三角形D.以AC為斜邊的直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.設(shè)p:函數(shù)f(x)=lg(x2-4x+a2)的定義域?yàn)镽;q:a2-5a-6≥0.如果“p∨q”為真,且“p∧q”為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知F1,F(xiàn)2分別是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右焦點(diǎn),點(diǎn)A是橢圓的右頂點(diǎn),O為坐標(biāo)原點(diǎn),若橢圓上的一點(diǎn)M滿足MF1⊥MF2,|MA|=|MO|,則橢圓的離心率為( 。
A.$\frac{\sqrt{10}}{5}$B.$\frac{2}{3}$C.$\frac{\sqrt{2}}{2}$D.$\frac{2\sqrt{7}}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個(gè)頂點(diǎn)與拋物線C2:x2=4y的焦點(diǎn)重合,F(xiàn)1、F2分別是橢圓C1的左、右焦點(diǎn),C1的離心率e=$\frac{\sqrt{2}}{2}$,過(guò)F2的直線l與橢圓C1交于M,N兩點(diǎn),與拋物線C2交于P,Q兩點(diǎn).
(1)求橢圓C1的方程;
(2)當(dāng)直線l的斜率k=-1時(shí),求△PQF1的面積;
(3)在x軸上是否存在點(diǎn)A,$\overrightarrow{AM}$•$\overrightarrow{AN}$為常數(shù)?若存在,求出點(diǎn)A的坐標(biāo)和這個(gè)常數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的半焦距為c,且b=c,橢圓的上頂點(diǎn)到右頂點(diǎn)的距離為2$\sqrt{3}$.
(1)求橢圓的方程;
(2)已知點(diǎn)F是橢圓的右焦點(diǎn),C(m,0)是線段OF上一個(gè)動(dòng)點(diǎn)(O為坐標(biāo)原點(diǎn)),是否存在過(guò)點(diǎn)F且與x軸不垂直的直線l與橢圓交于A,B兩點(diǎn),使得AC|=|BC|,并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案