A. | [-$\frac{π}{3}$,0] | B. | [-$\frac{4π}{3}$,-$\frac{5π}{6}$] | C. | [$\frac{2π}{3}$,$\frac{7π}{6}$] | D. | [-$\frac{5π}{6}$,-$\frac{π}{3}$] |
分析 由周期求得ω的值,根據(jù)圖象的對稱性求出φ的值,可得函數(shù)的解析式;再根據(jù)正弦函數(shù)的單調(diào)性求出函數(shù)f(x)的單調(diào)遞增區(qū)間,從而得出結(jié)論.
解答 解:由題意可得,函數(shù)f(x)的周期為$\frac{2π}{ω}$=π,求得ω=2,且A=3.
再由2×$\frac{π}{6}$+φ=kπ+$\frac{π}{2}$,k∈z,求得φ=kπ+$\frac{π}{6}$,結(jié)合|φ|<$\frac{π}{2}$可得φ=$\frac{π}{6}$,∴f(x)=3sin(2x+$\frac{π}{6}$).
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,故函數(shù)的增區(qū)間為[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈z.
故區(qū)間[-$\frac{5π}{6}$,-$\frac{π}{3}$]不是函數(shù)的增區(qū)間,
故選:D.
點評 本題主要考查由條件求函數(shù)y=Asin(ωx+φ)的解析式,正弦函數(shù)的圖象特征、正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{y^2}{36}-\frac{x^2}{108}=1$ | B. | $\frac{y^2}{9}-\frac{x^2}{27}=1$ | C. | $\frac{y^2}{108}-\frac{x^2}{36}=1$ | D. | $\frac{y^2}{27}-\frac{x^2}{9}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x=-$\frac{π}{6}$ | B. | x=$\frac{π}{6}$ | C. | x=-$\frac{π}{3}$ | D. | x=$\frac{π}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若|$\overrightarrow{a}$|>|$\overrightarrow$|,則$\overrightarrow{a}$>$\overrightarrow$ | B. | 坐標(biāo)系中的x軸,y軸都是向量 | ||
C. | 向量就是有向線段 | D. | 體積,面積,時間都不是向量 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com