4.將半徑為1的圓分割成面積之比為1:2:3的三個(gè)扇形作為三個(gè)圓錐的側(cè)面,設(shè)這三個(gè)圓錐底面半徑依次為r1,r2,r3,那么r1+r2+r3的值為(  )
A.$\frac{1}{2}$B.2C.$\sqrt{3}$D.1

分析 根據(jù)圓錐底面半徑對(duì)于側(cè)面展開圖的弧長關(guān)系分別計(jì)算三個(gè)圓錐底面半徑.

解答 解:∵2πr1=$\frac{1}{6}×2π$,∴r1=$\frac{1}{6}$,同理${r_2}=\frac{1}{3},{r_3}=\frac{1}{2}$,
∴r1+r2+r3=1,
故選:D.

點(diǎn)評(píng) 本題考查了圓錐的結(jié)構(gòu)特征,圓錐的側(cè)面展開圖,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖所示,A,B兩點(diǎn)5條連線并聯(lián),它們?cè)趩挝粫r(shí)間內(nèi)能通過的最大信息量依次為2,3,4,3,2.現(xiàn)記從中任取三條線且在單位時(shí)間內(nèi)都通過的最大信息總量為ξ,則P(ξ≥8)=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l的極坐標(biāo)方程為ρsin(θ-$\frac{π}{4}$)=2$\sqrt{2}$,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}{\;}\end{array}\right.$(θ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系.
(1)求直線l與圓C的交點(diǎn)的極坐標(biāo);
(2)若P為圓C上的動(dòng)點(diǎn),求P到直線l的距離d的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.填空:把下列各式補(bǔ)充完整
(1)C${\;}_{n}^{m}$=$\frac{{A}_{n}^{m}}{m!}$=$\frac{n!}{m!(n-m)!}$;
(2)C${\;}_{n}^{m}$=C${\;}_{n}^{()}$
(3)C${\;}_{()}^{m}$=C${\;}_{n}^{m}$+C${\;}_{n}^{()}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知cos2α+cos2β+cos2γ=1,則sinαsinβsinγ的最大值為( 。
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{2}}{9}$C.$\frac{2\sqrt{6}}{9}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列函數(shù)中,既是奇函數(shù)又在區(qū)間(0,$\frac{π}{2}$)上是減函數(shù)的是( 。
A.y=x3B.y═-sinxC.y=2x+1D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.區(qū)間[0,2]上隨機(jī)取一個(gè)數(shù)x,sin$\frac{πx}{2}$的值介于$\frac{1}{2}$到1之間的概率為(  )
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若3位同學(xué)分別從4門課程中選修1門,且選修的課程均不相同,則不同的選法共有24種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.對(duì)任意的非零實(shí)數(shù)a,b,若a?b的運(yùn)算原理如圖所示,且min{a,b,c}表示a,b,c中的最小值,則2?min{1,log0.30.1,30.1}的值為( 。
A.0B.1C.$2-log_{0.3}^{0.1}$D.2-30.1

查看答案和解析>>

同步練習(xí)冊(cè)答案