1.已知函數(shù)f(x)=alnx-ax+1(a>0).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,且函數(shù)g(x)=$\frac{1}{2}$x2+nx+mf′(x)(m,n∈R)當(dāng)且僅當(dāng)在x=1處取得極值,求m的取值范圍.

分析 (1)f′(x)=$\frac{a(1-x)}{x}$(x>0),當(dāng)a>0時,令f′(x)>0得0<x<1,令f′(x)<0得x>1,故函數(shù)f(x)的單調(diào)增區(qū)間為(0,1)單調(diào)減區(qū)間為(1,+∞);
(2)函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,則f′(2)=1,即a=-2;由g(x)在x=1處有極值,故g′(1)=0,從而可得n=-1-2m,討論m的范圍得出即可.

解答 解:(1)f′(x)=$\frac{a(1-x)}{x}$(x>0),
當(dāng)a>0時,令f′(x)>0得0<x<1,令f′(x)<0得x>1,
故函數(shù)f(x)的單調(diào)增區(qū)間為(0,1),單調(diào)減區(qū)間為(1,+∞);
(2)函數(shù)y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,
則f′(2)=1,即a=-2;                     
∴g(x)=$\frac{1}{2}$x2+nx+m(2-$\frac{2}{x}$),
∴g′(x)=x+n+$\frac{2m}{{x}^{2}}$=$\frac{{x}^{3}+n{x}^{2}+2m}{{x}^{2}}$,
∵g(x)在x=1處有極值,
故g′(1)=0,
從而可得n=-1-2m,
則g′(x)=$\frac{{x}^{3}+n{x}^{2}+2m}{{x}^{2}}$=$\frac{(x-1)({x}^{2}-2mx-2m)}{{x}^{2}}$,
又∵g(x)僅在x=1處有極值,
∴x2-2mx-2m≥0在(0,+∞)上恒成立,
當(dāng)m>0時,由-2m<0,
即?x0∈(0,+∞),
使得x02-2mx0-2m<0,
∴m>0不成立,
故m≤0,
又m≤0且x∈(0,+∞)時,x2-2mx-2m≥0恒成立,
∴m≤0.
即有m的取值范圍是(-∞,0].

點評 本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,解不等式,求參數(shù)的范圍,是一道綜合題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在四棱錐P-ABC中,PD⊥平面ABCD,四邊形ABCD是菱形,且∠DAB=60°,PD=AD,點E為AB中點,點F為PD中點.
(1)求證:平面PEF⊥平面PAB;
(2)求二面角P-AB-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.求證:${C}_{1003}^{0}{C}_{1004}^{4}$+${C}_{1003}^{1}{C}_{1004}^{3}$+${C}_{1003}^{2}{C}_{1004}^{2}$+${C}_{1003}^{3}{C}_{1004}^{1}$+${C}_{1003}^{4}{C}_{1004}^{0}$=${C}_{2007}^{4}\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖1,以BD為直徑的圓O經(jīng)過A,C兩點,延長DA,CB交于P點,將PAB沿線段AB折起,使P點在底面ABCD的射影恰為AD的中點Q,如圖2,AB=BC=1,BD=2,線段PB,PC的中點為E、F.
(1)判斷四點A,D,E,F(xiàn)是否共面,并說明理由;
(2)求平面PAB與平面PCD的夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=1-x+lnx.
(1)求函數(shù)在點x=2處的切線方程;
(2)對任意x∈(0,+∞),f(x)≤0恒成立;
(3)證明:當(dāng)n∈N+時,不等式($\frac{1}{n}$)n+($\frac{2}{n}$)n+…+($\frac{n-1}{n}$)n+($\frac{n}{n}$)n<$\frac{e}{e-1}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)滿足f(x)=x3+f′($\frac{2}{3}$)x2-x+C(其中f′($\frac{2}{3}$)為f(x)在點x=$\frac{2}{3}$處的導(dǎo)數(shù),C為常數(shù)).
(1)求函數(shù)f(x);
(2)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,游樂場中的摩天輪勻速旋轉(zhuǎn),每轉(zhuǎn)一圈需要12分鐘,其中圓心O距離地面40.5米,半徑40米,如果你從最低處登上摩天輪,那么你與地面的距離將隨時間的變化而變化,以你登上摩天輪的時刻開始計時,請解答下列問題.
(1)求出你與地面的距離y與時間t的函數(shù)關(guān)系式.
(2)當(dāng)你第四次距離地面只有60.5米時用了多少時間?
(3)當(dāng)你登上摩天輪兩分鐘后,你的朋友也在摩天輪最低處登上摩天輪,問你的朋友登上摩天輪多少時間后,你和你的朋友與地面的距離之差最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0),直線l1:$\frac{x}{a}$-$\frac{y}$=1被橢圓C截得的弦長為2$\sqrt{2}$,且e=$\frac{\sqrt{6}}{3}$,過橢圓C的右焦點且斜率為$\sqrt{3}$的直線l2被橢圓C截得弦長AB,
(1)求橢圓的方程;
(2)弦AB的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為備戰(zhàn)2016年奧運會,甲、乙兩位射擊選手進行了強化訓(xùn)練,現(xiàn)分別從他們的強化訓(xùn)練期間的若干次平均成績中隨機抽取8次,記錄如下:
甲:8.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3;
乙:9.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5.
(1)現(xiàn)要從中選派一人參見奧運會封閉集訓(xùn),從統(tǒng)計學(xué)角度,你認為派哪位選手參加合理?簡單說明理由;
(2)若將頻率視為概率,對選手乙在今后的三次比賽成績進行預(yù)測,記這三次成績中不低于8.5分的次數(shù)為ξ,求ξ的分布列及均值E(ξ).

查看答案和解析>>

同步練習(xí)冊答案