分析 (1)根據(jù)絕對(duì)值的定義寫出m=2時(shí)g(x)的解析式,再求函數(shù)g(x)的單調(diào)增、單調(diào)減區(qū)間;
(2)由題意|x-m|=|m|在x∈[-2,+∞)上有唯一解,求出m的取值范圍;
(3)由題意,g(x)的值域應(yīng)是f(x)的值域的子集;由此求出m的取值范圍.
解答 解:(1)函數(shù)g(x)=x|x-m|+2m-8,m為參數(shù);
m=2時(shí),g(x)=$\left\{\begin{array}{l}{x(x-2)-4,x≥2}\\{x(2-x)-4,x<2}\end{array}\right.$=$\left\{\begin{array}{l}{{x}^{2}-2x-4,x≥2}\\{{-x}^{2}+2x-4,x<2}\end{array}\right.$;
函數(shù)g(x)的單調(diào)增區(qū)間為(-∞,1),(2,+∞),
單調(diào)減區(qū)間為(1,2);(開閉均可)…(3分)
(2)由f(x)=2|x-m|在x∈[-2,+∞)上有唯一解,
得|x-m|=|m|在x∈[-2,+∞)上有唯一解;
即(x-m)2=m2,解得x=0或x=2m,
由題意知2m=0或2m<-2,即m<-1或m=0;
綜上,m的取值范圍是m<-1或m=0; …(7分)
(3)由題意,f(x)=$\left\{\begin{array}{l}{{2}^{x-m},x≥m}\\{{2}^{m-x},x<m}\end{array}\right.$,
則g(x)的值域應(yīng)是f(x)的值域的子集; …(9分)
當(dāng)m<4時(shí),f(x)在(-∞,m)上單調(diào)遞減,[m,4]上單調(diào)遞增,
故f(x)≥f(m)=1;
g(x)在[4,+∞)上單調(diào)遞增,故g(x)≥g(4)=8-2m;
所以8-2m≥1,即m≤$\frac{7}{2}$.…(12分)
點(diǎn)評(píng) 本題考查了絕對(duì)值的意義與函數(shù)的性質(zhì)應(yīng)用問題,是綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
X | -$\frac{π}{8}$ | $\frac{3π}{8}$ | |||
f(x) | 3 | 0 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
分組 | 頻數(shù) | 頻率 |
[10,15) | 10 | 0.25 |
[15,20) | 25 | n |
[20,25) | m | p |
[25,30] | 2 | 0.05 |
合計(jì) | M | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | k | C. | 2k | D. | 2k-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ①② | B. | ②③ | C. | ③④ | D. | ①④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com