【題目】ABC中,角AB,C的對邊分別為a,b,c,滿足acosB+bcosA=2ccosC

1)求角C的大;

2)若ABC的周長為3,求ABC的內切圓面積S的最大值.

【答案】1C=2

【解析】

(1)先根據正弦定理化邊為角,化簡即得cosC= ,解得結果,(2)先根據余弦定理得3+ab=2a+b),再根據基本不等式得ab最大值,根據內切圓性質得內切圓半徑為ab,即可求得內切圓面積S的最大值.

解:(Ⅰ)因為acosB+bcosA=2ccosCsinAcosB+sinBcosA=2sinCcosC,

sinA+B=2sinCcosC,

sinA+B=sinC0,則cosC=,

C∈(0π),

所以C=

(Ⅱ)令ABC的內切圓半徑為R,有absin=3R,則R=ab

由余弦定理得a2+b2-ab=3-a-b2,化簡得3+ab=2a+b),

a+b≥2,故3+ab≥4,解得≥3≤1

≥3,則a,b至少有一個不小于3,這與ABC的周長為3矛盾;

≤1,則當a=b=1=c時,R取最大值

綜上,知ABC的內切圓最大面積值為Smax2=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓兩焦點坐標為,,橢圓上的點到右焦點距離最小值為.

1)求橢圓的方程;

2)設斜率為-2的直線交曲線、兩點,求線段的中點的軌跡方程;

3)設經過點的直線與曲線相交所得的弦為線段,求的面積的最大值(是坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知三棱錐,點的中點,且,過點作一個截面,使截面平行于,則截面的周長為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:①任意兩條直線都可以確定一個平面;②若兩個平面有3個不同的公共點,則這兩個平面重合;③直線a,bc,若ab共面,bc共面,則ac共面;④若直線l上有一點在平面α外,則l在平面α.其中錯誤命題的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在湖南師大附中的校園歌手大賽決賽中,有6位參賽選手(1號至6號)登臺演出,由現(xiàn)場的100位同學投票選出最受歡迎的歌手,各位同學須彼此獨立地在投票器上選出3位侯選人,其中甲同學是1號選手的同班同學,必選1號,另在2號至6號選手中隨機選2名;乙同學不欣賞2號選手,必不選2號,在其他5位選手中隨機選出3名;丙同學對6位選手的演唱沒有偏愛,因此在1號至6號選手中隨機選出3名.

1)求同學甲選中3號且同學乙未選中3號選手的概率;

2)設3號選手得到甲、乙、丙三位同學的票數(shù)之和為X,求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正方形ABCD的邊長為2,對角線AC、BD相交于點O,動點P滿足,若,其中m、nR,則的最大值是________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓, 過點的直線與橢圓交于MN兩點(M點在N點的上方),與軸交于點E.

(1)當時,求點M、N的坐標;

(2)當時,設,,求證:為定值,并求出該值;

(3)當時,點D和點F關于坐標原點對稱,若△MNF的內切圓面積等于,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(0,-2),橢圓E (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.

(1)E的方程;

(2)設過點A的動直線lE相交于P,Q兩點.OPQ的面積最大時,求l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總人數(shù)、經濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關系如表:

(1)根據表中的數(shù)據,運用相關系數(shù)進行分析說明,是否可以用線性回歸模型擬合的關系?并指出是正相關還是負相關;

(2)①求出關于的回歸方程;

②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內購買該流量包的人數(shù)能否超過20 萬人.

參考數(shù)據:,,.

參考公式:相關系數(shù),回歸直線方程,

其中,.

查看答案和解析>>

同步練習冊答案