【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,滿足acosB+bcosA=2ccosC.
(1)求角C的大;
(2)若△ABC的周長為3,求△ABC的內切圓面積S的最大值.
【答案】(1)C=(2)
【解析】
(1)先根據正弦定理化邊為角,化簡即得cosC= ,解得結果,(2)先根據余弦定理得3+ab=2(a+b),再根據基本不等式得ab最大值,根據內切圓性質得內切圓半徑為ab,即可求得內切圓面積S的最大值.
解:(Ⅰ)因為acosB+bcosA=2ccosCsinAcosB+sinBcosA=2sinCcosC,
即sin(A+B)=2sinCcosC,
而sin(A+B)=sinC>0,則cosC=,
又C∈(0,π),
所以C=.
(Ⅱ)令△ABC的內切圓半徑為R,有absin=3R,則R=ab,
由余弦定理得a2+b2-ab=(3-a-b)2,化簡得3+ab=2(a+b),
而a+b≥2,故3+ab≥4,解得≥3或≤1.
若≥3,則a,b至少有一個不小于3,這與△ABC的周長為3矛盾;
若≤1,則當a=b=1=c時,R取最大值.
綜上,知△ABC的內切圓最大面積值為Smax=π()2=.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知橢圓兩焦點坐標為,,橢圓上的點到右焦點距離最小值為.
(1)求橢圓的方程;
(2)設斜率為-2的直線交曲線于、兩點,求線段的中點的軌跡方程;
(3)設經過點的直線與曲線相交所得的弦為線段,求的面積的最大值(是坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:①任意兩條直線都可以確定一個平面;②若兩個平面有3個不同的公共點,則這兩個平面重合;③直線a,b,c,若a與b共面,b與c共面,則a與c共面;④若直線l上有一點在平面α外,則l在平面α外.其中錯誤命題的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在湖南師大附中的校園歌手大賽決賽中,有6位參賽選手(1號至6號)登臺演出,由現(xiàn)場的100位同學投票選出最受歡迎的歌手,各位同學須彼此獨立地在投票器上選出3位侯選人,其中甲同學是1號選手的同班同學,必選1號,另在2號至6號選手中隨機選2名;乙同學不欣賞2號選手,必不選2號,在其他5位選手中隨機選出3名;丙同學對6位選手的演唱沒有偏愛,因此在1號至6號選手中隨機選出3名.
(1)求同學甲選中3號且同學乙未選中3號選手的概率;
(2)設3號選手得到甲、乙、丙三位同學的票數(shù)之和為X,求X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓:, 過點的直線:與橢圓交于M、N兩點(M點在N點的上方),與軸交于點E.
(1)當且時,求點M、N的坐標;
(2)當時,設,,求證:為定值,并求出該值;
(3)當時,點D和點F關于坐標原點對稱,若△MNF的內切圓面積等于,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(0,-2),橢圓E: (a>b>0)的離心率為,F是橢圓E的右焦點,直線AF的斜率為,O為坐標原點.
(1)求E的方程;
(2)設過點A的動直線l與E相交于P,Q兩點.當△OPQ的面積最大時,求l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著智能手機的普及,使用手機上網成為了人們日常生活的一部分,很多消費者對手機流量的需求越來越大.長沙某通信公司為了更好地滿足消費者對流量的需求,準備推出一款流量包.該通信公司選了5個城市(總人數(shù)、經濟發(fā)展情況、消費能力等方面比較接近)采用不同的定價方案作為試點,經過一個月的統(tǒng)計,發(fā)現(xiàn)該流量包的定價:(單位:元/月)和購買人數(shù)(單位:萬人)的關系如表:
(1)根據表中的數(shù)據,運用相關系數(shù)進行分析說明,是否可以用線性回歸模型擬合與的關系?并指出是正相關還是負相關;
(2)①求出關于的回歸方程;
②若該通信公司在一個類似于試點的城市中將這款流量包的價格定位25元/ 月,請用所求回歸方程預測長沙市一個月內購買該流量包的人數(shù)能否超過20 萬人.
參考數(shù)據:,,.
參考公式:相關系數(shù),回歸直線方程,
其中,.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com