10.某公司生產(chǎn)一種產(chǎn)品,每年需投入固定成本25萬元,此外每生產(chǎn)100件這樣的產(chǎn)品,還需增加投入50萬元,經(jīng)市場調(diào)查知這種產(chǎn)品年需求量為500件,產(chǎn)品銷售數(shù)量為t件時,銷售所得的收入為$(5t-\frac{1}{200}{t}^{2})$萬元.
(1)該公司這種產(chǎn)品的年生產(chǎn)量為x件,生產(chǎn)并銷售這種產(chǎn)品所得到的利潤關(guān)于當(dāng)年產(chǎn)量x的函數(shù)為f(x),求f(x);
(2)當(dāng)該公司的年產(chǎn)量為多少件時,當(dāng)年所獲得的利潤最大?

分析 (1)根據(jù)銷售這種產(chǎn)品所得的年利潤=銷售所得的收入-銷售成本,建立函數(shù)關(guān)系即可;
(2)利用配方法,求得0<x≤500時,$f(x)=-\frac{1}{200}{(x-450)}^{2}+\frac{1975}{2}$在x=450時取得最大值,x>500時,$f(x)<-\frac{1}{2}×500+1225=975$,即獲得的利潤最大.

解答 解:(1)當(dāng)0<x≤500時,$f(x)=5x-\frac{1}{200}{x}^{2}-50•\frac{x}{100}-25$.
當(dāng)x>500時,$f(x)=5×500-\frac{1}{200}×{500}^{2}-50×\frac{x}{100}-25$,
故$f(x)=\left\{\begin{array}{l}-\frac{1}{200}{x}^{2}+\frac{9x}{2}-250<x≤500\\-\frac{1}{2}x+1225x>500\end{array}\right.$;
(2)當(dāng)0<x≤500時,$f(x)=-\frac{1}{200}{(x-450)}^{2}+\frac{1975}{2}$   
故當(dāng)x=450時,${f(x)}_{max}=\frac{1975}{2}$;
當(dāng)x>500時,$f(x)<-\frac{1}{2}×500+1225=975$,
故當(dāng)該公司的年產(chǎn)量為450件時,當(dāng)年獲得的利潤最大.

點評 本題考查了函數(shù)模型的性質(zhì)與運用,考查了簡單的建模思想方法,訓(xùn)練里利用配方法求二次函數(shù)的最值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在△ABC中,a,b,c分別是角A,B,C的對邊,已知3(b2+c2)=3a2+2bc.
(1)若a=2,b+c=2$\sqrt{2}$,求△ABC的面積S;
(2)若sinB=$\sqrt{2}$cosC,求cosC的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知拋物線M:y2=12x的焦點F到雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)漸近線的距離為$\frac{3\sqrt{10}}{4}$,點P是拋物線M上的一動點,且P到雙曲線C的焦點F1(0,c)的距離與到直線x=-3的距離之和的最小值為5,則雙曲線C的方程為(  )
A.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{4}$=1B.$\frac{{y}^{2}}{4}$-$\frac{{x}^{2}}{12}$=1C.$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{10}$=1D.$\frac{{y}^{2}}{10}$-$\frac{{x}^{2}}{6}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.過橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的焦點垂直于x軸的弦長為a.則雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率為$\frac{\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知球O的一個內(nèi)接三棱錐P-ABC,其中△ABC是邊長為2的正三角形,PC為球O的直徑,且PC=4,則此三棱錐的體積為( 。
A.$\frac{2}{3}\sqrt{3}$B.$\frac{4}{3}\sqrt{2}$C.$\frac{4}{3}\sqrt{6}$D.$\frac{2}{3}\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知Sn,Tn分別是等差數(shù)列{an},{bn}的前n項和,且$\frac{S_n}{T_n}=\frac{2n+1}{4n-2}(n∈{N^*})$,則$\frac{a_9}{{{b_1}+{b_{17}}}}+\frac{a_9}{{{b_5}+{b_{13}}}}$=$\frac{35}{66}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在正三棱柱ABC-A1B1C1中,AB=AA1=1,DC=DC1,AE=ED,F(xiàn)為BB1上任意一點,且FB1=3BF.
(Ⅰ)求證:EF∥平面ABC;
(Ⅱ)求該三棱柱的側(cè)面展開圖的對角線長;
(Ⅲ)三棱錐B1-ABC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,底面是直角三角形的直三棱柱ABC-A1B1C1中,$AC=BC=\frac{1}{2}A{A_1}=1$,D是棱AA1上的動點.
(1)證明:DC1⊥BC;
(2)求三棱錐C-BDC1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)數(shù)列{an}的前n項和為Sn,已知a1=1,Sn+1=4an+2(n∈N+).
(1)求a2,a3,a4;
(2)設(shè)bn=an+1-2an,求證:{bn}是等比數(shù)列,并求{bn}的通項公式.

查看答案和解析>>

同步練習(xí)冊答案