3.函數(shù)y=2x3-3x2( 。
A.在x=0處取得極大值0,但無極小值
B.在x=1處取得極小值-1,但無極大值
C.在x=0處取得極大值0,在x=1處取得極小值-1
D.以上都不對

分析 求出函數(shù)的導數(shù),得到函數(shù)的單調(diào)區(qū)間,進而求出函數(shù)的極值.

解答 解:y′=6x2-6x,
令y′>0,解得:x>1或x<0,令y′<0,解得:0<x<1,
∴函數(shù)y=2x3-3x2在(-∞,0),(1,+∞)遞增,在(0,1)遞減,
∴函數(shù)在x=0處取得極大值0,在x=1處取得極小值-1,
故選:C.

點評 本題考查了函數(shù)的單調(diào)性、極值問題,考查導數(shù)的應用,是一道基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

13.已知曲線y=x2+2x-2在點M處的切線與x軸平行,則點M的坐標是(-1,-3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.利用獨立性檢驗來考慮兩個分類變量X與Y是否有關(guān)系時,通過查閱下表來確定“X和Y有關(guān)系”的可信度.如果k>3.841,那么就有把握認為“X和Y有關(guān)系”的百分比為( 。
p(K2>k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.83
A.25%B.97.5%C.5%D.95%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.根據(jù)要求證明下列各題:
(1)用分析法證明:$\sqrt{3}-\sqrt{2}>\sqrt{6}-\sqrt{5}$;
(2)用反證法證明:1,$\sqrt{2}$,3不可能是一個等差數(shù)列中的三項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知二次函數(shù)f(x)的圖象經(jīng)(0,0),(1,2),(-1,-4)三點,
(1)求該二次函數(shù)的解析式和最值;
(2)已知函數(shù)在(t-1,+∞)上為減函數(shù),求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知平面中三點A(-1,-1),B(1,2),C(8,-2),判斷三角形ABC的形狀( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.無法判斷

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.用分析法證明不等式:設x≥5,求證:$\sqrt{x-2}$-$\sqrt{x-3}$<$\sqrt{x-4}$-$\sqrt{x-5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知函數(shù)f(x)=x2+ax-lnx,a∈R
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實數(shù)a的取值范圍
(2)令g(x)=f(x)-x2,是否存在實數(shù)a,當x∈(0,e]時,函數(shù)g(x)的最小值是3?若存在,求出a的值,若不存在,說明理由
(3)當x∈(0,e]時,求證:e2x2-$\frac{5}{2}$x>(x+1)lnx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知△ABC的內(nèi)角A、B、C 對應的邊分別為a,b,c向量$\overrightarrow{m}$=($\frac{a}{sin(A+B)}$,c-2b),$\overrightarrow{n}$=(sin2C,1)滿足|$\overrightarrow{m}$+$\overrightarrow{n}$|=|$\overrightarrow{m}$-$\overrightarrow{n}$|
(1)求A大;
(2)若a=1,求△ABC的周長的取值范圍.

查看答案和解析>>

同步練習冊答案