12.已知α,β是平面,m,n是直線.下列命題中不正確的是( 。
A.若m∥n,m⊥α,則n⊥αB.若m∥α,α∩β=n,則m∥n
C.若m⊥α,m⊥β,則α∥βD.若m⊥α,m∩β,則α⊥β

分析 在A中,由直線與平面垂直的判定定理得n⊥α;在B中,m與n平行或異面;在C中,由平面與平面平行的判定定理得α∥β;在D中,由平面與平面垂直的判定定理得α⊥β.

解答 解:∵在A中:若m∥n,m⊥α,則由直線與平面垂直的判定定理得n⊥α,故A正確;
在B中:若m∥α,α∩β=n,則m與n平行或異面,故B錯誤;
在C中:若m⊥α,m⊥β,則由平面與平面平行的判定定理得α∥β,故C正確;
在D中:若m⊥α,m∩β,則由平面與平面垂直的判定定理得α⊥β,故D正確.
故選:B.

點評 本題考查命題真假的判斷,是中檔題,解題時要認(rèn)真審題,注意空間中線線、線面、面面間的位置關(guān)系的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=$\frac{2}{x-1}$,x∈[2,3]的最大值是( 。
A.2B.3C.1D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知f(x)是二次函數(shù),不等式f(x)<0的解集是(0,5),且f(x)在區(qū)間[-1,4]上的最大值是12.
(1)求f(x)的解析式.
(2)求f(x)在區(qū)間[-1,4]的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在△ABC中,a,b,c分別為角A,B,C所對的邊,已知a=8,b=7,B=60°,則S△ABC=6$\sqrt{3}$或10$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知集合A={x|3-a<x<2a+7},B={x|x≤3或x≥6}
(1)當(dāng)a=3時,求A∩B;
(2)若A∩B=∅,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.點(a,a-1)在圓x2+y2-2y-9=0的內(nèi)部,則a的取值范圍是( 。
A.-1<a<3B.1<a<3C.$\frac{1}{5}$<a<1D.-$\frac{1}{5}$<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.動點P與平面上兩定點A(-$\sqrt{2}$,0),B($\sqrt{2}$,0)連線的斜率的積為定值-$\frac{1}{2}$,則動點P的軌跡方程為$\frac{{x}^{2}}{2}$+y2=1(x≠±$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=ax2+bx+1是定義在[a+1,2a]上的偶函數(shù),那么a+b的值為(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$-\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列各函數(shù)中,在(-∞,+∞)上為增函數(shù)的是( 。
A.y=(0.2)xB.y=4-xC.y=3xD.y=($\frac{1}{\sqrt{2}+1}$)x

查看答案和解析>>

同步練習(xí)冊答案