18.已知直線l:xtanα-y+2=0,其中α∈(-π,-$\frac{π}{2}$),則直線l的傾斜角為π+α.

分析 先求出直線l的斜率,再求直線l的傾斜角.

解答 解:∵直線l:xtanα-y+2=0,其中α∈(-π,-$\frac{π}{2}$),
∴直線l的斜率k=tanα=tan(π+α),
∴直線l的傾斜角為π+α.
故答案為:π+α.

點(diǎn)評(píng) 本題考查直線的傾斜角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意直線性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.?dāng)?shù)列{an}中,an+1=an+a(n∈N*,a為常數(shù)),若平面上三個(gè)不重合的點(diǎn)A,B,C共線,且該直線不過點(diǎn)O,且$\overrightarrow{OC}$=$\frac{{a}_{1}}{2}$$\overrightarrow{OA}$+$\frac{{a}_{2011}}{2}$$\overrightarrow{OB}$,則S2011等于(  )
A.1005B.$\frac{1}{2}$C.2010D.2011

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知3tanα=2tan(α+β),求證:5sinβ=sin(2α+β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α,β,γ是三個(gè)兩兩平行的平面,且α與β之間的距離是3,α與γ之間的距離為4,則β與γ之間的距離的取值范圍是{1,7}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若x>$\frac{2}{3}$,則y=x+$\frac{4}{3x-2}$的最小值是$\frac{4\sqrt{3}}{3}$
若x<2,則y=$\frac{5-4x+{x}^{2}}{2-x}$的最小值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知直線l經(jīng)過點(diǎn)(0,2),且與點(diǎn)(0,3)的距離為$\frac{3\sqrt{13}}{13}$,求l的一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}滿足a1=1,an+1=$\frac{{a}_{n}}{1+{{a}_{n}}^{2}}$(n∈N*).
(1)證明:當(dāng)n≥1,n∈N*時(shí),$\frac{2}{n+2}$≤an≤1;
(2)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,證明:Sn≤$\sqrt{2n-1}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在平面直角坐標(biāo)系中,點(diǎn)P(1,2cos2A)和Q(sin2A,-1)分別在角α、角β的終邊上,且$\overrightarrow{OP}$•$\overrightarrow{OQ}$=$\frac{1}{4}$,已知銳角△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c.
(1)求tan(α+β);
(2)若a=3,求BC邊上的高的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.為推進(jìn)“十二五”期間環(huán)保事業(yè)的科學(xué)發(fā)展,加快資源節(jié)約型、環(huán)境友好型社會(huì)建設(shè),推行清潔生產(chǎn)和發(fā)展循環(huán)經(jīng)濟(jì),減少造紙行業(yè)的污染物排放,寧夏某大型造紙企業(yè)擬建一座俯視圖為矩形且其面積為81平方米的三級(jí)污水處理池(如下圖所示),池的高度為3米.如果池的四周圍墻建造單價(jià)為200元/平方米,中間兩道隔墻建造價(jià)格為138元/平方米,池底建造單價(jià)為70元/平方米,該污水處理池所有的墻的厚度忽略不計(jì).設(shè)污水池的寬為x米,總造價(jià)為S元.
(Ⅰ)寫出S關(guān)于x的函數(shù)表達(dá)式,并求出x的取值范圍;
(Ⅱ)設(shè)計(jì)污水處理池的長(zhǎng)和寬分別為多少時(shí),總造價(jià)S最低,求出最低總造價(jià).

查看答案和解析>>

同步練習(xí)冊(cè)答案