【題目】某機(jī)構(gòu)組織語(yǔ)文、數(shù)學(xué)學(xué)科能力競(jìng)賽,按照一定比例淘汰后,頒發(fā)一二三等獎(jiǎng).現(xiàn)有某考場(chǎng)的兩科考試成績(jī)數(shù)據(jù)統(tǒng)計(jì)如下圖所示,其中數(shù)學(xué)科目成績(jī)?yōu)槎泉?jiǎng)的考生有人.
(Ⅰ)求該考場(chǎng)考生中語(yǔ)文成績(jī)?yōu)橐坏泉?jiǎng)的人數(shù);
(Ⅱ)用隨機(jī)抽樣的方法從獲得數(shù)學(xué)和語(yǔ)文二等獎(jiǎng)的學(xué)生中各抽取人,進(jìn)行綜合素質(zhì)測(cè)試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進(jìn)行比較分析;
(Ⅲ)已知本考場(chǎng)的所有考生中,恰有人兩科成績(jī)均為一等獎(jiǎng),在至少一科成績(jī)?yōu)橐坏泉?jiǎng)的考生中,隨機(jī)抽取人進(jìn)行訪談,求兩人兩科成績(jī)均為一等獎(jiǎng)的概率.
【答案】(Ⅰ)4人;(Ⅱ)見(jiàn)解析;(Ⅲ).
【解析】試題分析:(Ⅰ)由數(shù)學(xué)成績(jī)?yōu)槎泉?jiǎng)的考生人數(shù)及頻率,可求得總?cè)藬?shù),再利用對(duì)立事件的概率公式求出該考場(chǎng)考生中語(yǔ)文成績(jī)?yōu)橐坏泉?jiǎng)的頻率,與總?cè)藬?shù)相乘即可得結(jié)果(Ⅱ)分別利用平均值公式與方差公式求出數(shù)學(xué)和語(yǔ)文二等獎(jiǎng)的學(xué)生兩科成績(jī)的平均值與方差,可得數(shù)學(xué)二等獎(jiǎng)考生較語(yǔ)文二等獎(jiǎng)考生綜合測(cè)試平均分高,但是穩(wěn)定性較差;(Ⅲ)利用列舉法求得隨機(jī)抽取兩人的基本事件個(gè)數(shù)為個(gè),而兩人兩科成績(jī)均為一等獎(jiǎng)的基本事件共個(gè),利用古典概型概率公式可得結(jié)果.
試題解析:(Ⅰ)由數(shù)學(xué)成績(jī)?yōu)槎泉?jiǎng)的考生有人,可得,所以語(yǔ)文成績(jī)?yōu)橐坏泉?jiǎng)的考生人
(Ⅱ)設(shè)數(shù)學(xué)和語(yǔ)文兩科的平均數(shù)和方差分別為,,,
,
,因?yàn)?/span>,,所以數(shù)學(xué)二等獎(jiǎng)考生較語(yǔ)文二等獎(jiǎng)考生綜合測(cè)試平均分高,但是穩(wěn)定性較差.
(Ⅲ)兩科均為一等獎(jiǎng)共有人,僅數(shù)學(xué)一等獎(jiǎng)有人,僅語(yǔ)文一等獎(jiǎng)有人----9分
設(shè)兩科成績(jī)都是一等獎(jiǎng)的人分別為,只有數(shù)學(xué)一科為一等獎(jiǎng)的人分別是,只有語(yǔ)文一科為一等獎(jiǎng)的人是,則隨機(jī)抽取兩人的基本事件空間為 ,共有個(gè),而兩人兩科成績(jī)均為一等獎(jiǎng)的基本事件共個(gè),所以兩人的兩科成績(jī)均為一等獎(jiǎng)的概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若關(guān)于的不等式的解集為,求實(shí)數(shù)的值;
(2)若對(duì)任意的,,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB,BB1的中點(diǎn).
(Ⅰ)證明: BC1//平面A1CD;
(Ⅱ)設(shè)AA1= AC=CB=2,AB=2,求三棱錐C一A1DE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)圖象經(jīng)過(guò)的定點(diǎn)坐標(biāo);
(2)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程及函數(shù)單調(diào)區(qū)間;
(3)若對(duì)任意,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),曲線的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和曲線的極坐標(biāo)方程;
(2)曲線分別交直線和曲線于點(diǎn),求的最大值及相應(yīng)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市有一面積為12000平方米的三角形地塊,其中邊長(zhǎng)為200米,現(xiàn)計(jì)劃建一個(gè)如圖所示的長(zhǎng)方形停車場(chǎng),停車場(chǎng)的四個(gè)頂點(diǎn)都在的三條邊上,其余的地面全部綠化.若建停車場(chǎng)的費(fèi)用為180元/平方米,綠化的費(fèi)用為60元/平方米,設(shè)米,建設(shè)工程的總費(fèi)用為元.
(1)求關(guān)于的函數(shù)表達(dá)式:
(2)求停車場(chǎng)面積最大時(shí)的值,并求此時(shí)的工程總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), .
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程.
(Ⅱ)當(dāng)時(shí),若曲線上的點(diǎn)都在不等式組所表示的平面區(qū)域內(nèi),試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)相鄰兩對(duì)稱軸間的距離為,若將的圖象先向左平移個(gè)單位,再向下平移1個(gè)單位,所得的函數(shù)為奇函數(shù).
(1)求的解析式,并求的對(duì)稱中心;
(2)若關(guān)于的方程在區(qū)間上有兩個(gè)不相等的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com