【題目】選修4-4:坐標系與參數(shù)方程

已知在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),曲線的方程為.以坐標原點為極點, 軸的正半軸為極軸建立極坐標系.

1)求直線和曲線的極坐標方程;

2)曲線分別交直線和曲線于點,的最大值及相應(yīng)的值.

【答案】1, 2時, 取得最大值

【解析】試題分析:(1)利用代入法消去參數(shù)可得直線的普通方程,將曲線的方程化為一般式,利用公式, ,即可得到直線和曲線的極坐標方程;(2)直線的極坐標方程為,令,可得,由曲線的極坐標方程可得,所以,利用三角函數(shù)的有界性可得結(jié)果.

試題解析:1,∴直線的普通方程為: ,

直線的極坐標方程為.

曲線的普通方程為

, 的參數(shù)方程為:

(2)直線的極坐標方程為,令,則

,即;

,

,

,即時, 取得最大值

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《聰明花開——莆仙話挑戰(zhàn)賽》欄目共有五個項目,分別為“和一斗”“斗麻利”“文儒生”“放獨步”“正功夫”.《聰明花開》欄目組為了解觀眾對項目的看法,設(shè)計了“你最喜歡的項目是哪一個”的調(diào)查問卷(每人只能選一個項目),對現(xiàn)場觀眾進行隨機抽樣調(diào)查,得到如下數(shù)據(jù)(單位:人):

和一斗

斗麻利

文儒生

放獨步

正功夫

115

230

115

345

460

(1)在所有參與該問卷調(diào)查的人中,用分層抽樣的方法抽取n人座談,其中恰有4人最喜歡“斗麻利”,求n的值及所抽取的人中最喜歡“和一斗”的人數(shù);

(2)在(1)中抽取的最喜歡“和一斗”和“斗麻利”的人中,任選2人參加欄目組互動,求恰有1人最喜歡“和一斗”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),其中實數(shù)滿足,若的最大值為,則 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面上動點到點的距離與到直線的距離之比為,記動點的軌跡為曲線.

1)求曲線的方程;

2)設(shè)是曲線上的動點,直線的方程為.

①設(shè)直線與圓交于不同兩點, ,求的取值范圍;

②求與動直線恒相切的定橢圓的方程;并探究:若是曲線 上的動點,是否存在直線 恒相切的定曲線?若存在,直接寫出曲線的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某機構(gòu)組織語文、數(shù)學(xué)學(xué)科能力競賽,按照一定比例淘汰后,頒發(fā)一二三等獎.現(xiàn)有某考場的兩科考試成績數(shù)據(jù)統(tǒng)計如下圖所示,其中數(shù)學(xué)科目成績?yōu)槎泉劦目忌?/span>人.

(Ⅰ)求該考場考生中語文成績?yōu)橐坏泉劦娜藬?shù);

(Ⅱ)用隨機抽樣的方法從獲得數(shù)學(xué)和語文二等獎的學(xué)生中各抽取人,進行綜合素質(zhì)測試,將他們的綜合得分繪成莖葉圖,求樣本的平均數(shù)及方差并進行比較分析;

(Ⅲ)已知本考場的所有考生中,恰有人兩科成績均為一等獎,在至少一科成績?yōu)橐坏泉劦目忌,隨機抽取人進行訪談,求兩人兩科成績均為一等獎的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若數(shù)列是公差為2的等差數(shù)列,數(shù)列滿足b1=1,b2=2,且anbnbnnbn1.

(1)求數(shù)列,的通項公式;

(2)設(shè)數(shù)列滿足,數(shù)列的前n項和為,若不等式

對一切n∈N*恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)判斷函數(shù)的奇偶性,并加以證明;

2)用定義證明上是減函數(shù);

3)函數(shù)上是單調(diào)增函數(shù)還是單調(diào)減函數(shù)?(直接寫出答案,不要求寫證明過程).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓內(nèi)接四邊形ABCD的邊

Ⅰ)求角C的大小和BD的長;

Ⅱ)求四邊形ABCD的面積及外接圓的半徑.

查看答案和解析>>

同步練習冊答案