分析 分別化簡(jiǎn)命題p,q,可得¬p,再利用?p是q的充分不必要條件,即可得出.
解答 解:∵命題P:{x|x≤-1或x≥2},∴¬p:{x|-1<x<2},
q:x∈{x|2a-1≤x≤a+3}”,
∵?p是q的充分不必要條件,
∴$\left\{\begin{array}{l}{2a-1≤-1}\\{a+3≥2}\end{array}\right.$,解得-1≤a≤0.
∴a的取值范圍是[-1,0];
故答案為:[-1,0]
點(diǎn)評(píng) 本題考查了不等式的性質(zhì)、簡(jiǎn)易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 24 | B. | 4$\sqrt{10}$ | C. | 14 | D. | 8+4$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 對(duì)于命題p:?x∈R,x2+x+1>0,則?p:?x0∈R,x02+x0+1≤0 | |
B. | “x=1”是“x2-3x+2=0”的充分不必要條件 | |
C. | 若命題p∧q為假命題,則p,q都是假命題 | |
D. | 命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0” |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\sqrt{2},2)$ | B. | $(2,\sqrt{6})$ | C. | $(\sqrt{2},\sqrt{3})$ | D. | $(\sqrt{6},4)$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com